GSTDTAP  > 气候变化
Device simulates filtering and ion transport functions of human kidney
admin
2020-05-27
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Christa Hestekin, University of Arkansas view more 

Credit: University of Arkansas

Chemical engineering researchers at the University of Arkansas have developed a device that simulates the blood filtering and ion transport functions of the human kidney. The technology could transform treatment options for people in the final stage of renal disease.

"Basically we created a synthetic nephron - the structure that filters blood to disperse nutrients to the body and remove waste material," said Christa Hestekin, associate professor of chemical engineering and principal researcher. "The system could work as a stand-alone device or in conjunction with peritoneal dialysis to control the chemistry of solutions used in treatment. And, minor modifications to the device could enable it to function as a wearable and potentially implantable artificial kidney."

Hestekin works on a team including Jamie Hestekin, professor of chemical engineering; Ira Kurtz, professor of medicine and chief of nephrology at UCLA Health; and several students in the Ralph E. Martin Department of Chemical Engineering at the University of Arkansas. Funded by the US Kidney Research Corporation, the work was published in Communications Materials, a Nature publication.

The researchers' system simulates the critical ion transport work of the nephron. As the structural and functional unit of the kidney, the nephron regulates blood chemistry through filtration of the blood that delivers ions and organic molecules to the body before generating urine to be excreted.

To simulate the filtration process, researchers inserted platinum porous meshes between two ion-exchange wafers to create a single electrodeionization wafer that uses an electric field to force ions through membranes. The meshes serve as electrodes when voltage is applied. The mesh electrodes enabled independent control of transport chambers within the device, which in turn allowed researchers to select different ions and adjust transport rates independently.

Hestekin's team successfully tested the technology with several physiologically relevant ions, mimicking the specific control of ion transport by the kidney.

Combined with ultrafiltration, nanofiltration or reverse osmosis systems, the researchers' technology could be integrated into an artificial kidney, Hestekin said.

According to the Centers for Disease Control and Prevention, 37 million people in the United States suffer with some form of chronic kidney disease. Of these, about 700,000 people per year will develop end-stage, renal disease, which requires dialysis or, as a last resort, a kidney transplant. The CDC reports that the average duration of patient survival on dialysis is slightly longer than seven years, and patients generally must wait about 10 years to receive a donated kidney. Roughly 100,000 people die each year while waiting for a kidney transplant.

###

Christa Hestekin holds the Ansel and Virginia Condray Endowed Professorship in Chemical Engineering. Jamie Hestekin holds the Ralph E. Martin Professorship in Chemical Engineering.

CONTACTS:

Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/271322
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Device simulates filtering and ion transport functions of human kidney. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。