GSTDTAP  > 气候变化
DOI10.1002/2017GL072832
QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum
Hood, Lon L.
2017-04-28
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2017
卷号44期号:8
文章类型Article
语种英语
国家USA
英文摘要

The Madden-Julian oscillation (MJO), also known as the 30-60day oscillation, is the strongest of the intraseasonal climate oscillations in the tropics and has significant derivative effects on extratropical circulation and intraseasonal climate. It has recently been shown that the stratospheric quasi-biennial oscillation (QBO) modulates the amplitude of the boreal winter MJO such that MJO amplitudes are larger on average during the easterly phase (QBOE) than during the westerly phase (QBOW). A major possible mechanism is the decrease in static stability in the lowermost stratosphere under QBOE conditions resulting from relative upwelling associated with the QBO-induced meridional circulation. Here evidence is presented that tropical upwelling changes related to the 11year solar cycle also modulate the boreal winter MJO. Based on 37.3years of MJO amplitude data, the largest amplitudes and occurrence rates, and the weakest static stabilities in the tropical lower stratosphere, occur during the QBOE phase under solar minimum (SMIN) conditions while the smallest amplitudes and strongest static stabilities occur during the QBOW phase under solar maximum (SMAX) conditions. Conversely, when the QBO and solar forcings are opposed (QBOW/SMIN and QBOE/SMAX), the difference in occurrence rates becomes statistically insignificant. During the coming solar minimum, at least one additional winter in the QBOE/SMIN category should occur (possibly as early as 2017/2018) during which especially large MJO amplitudes are expected and an initial test of these results will be possible.


Plain Language Summary An ongoing issue in climate science is the extent to which upper atmospheric processes, including solar forcing, can influence tropospheric climate. It has recently been shown that an internal oscillation of the stratosphere, the quasi-biennial oscillation, can modulate the amplitude and occurrence rate of intraseasonal climate oscillations in the tropical Pacific during northern winter. These intraseasonal oscillations, the most important of which is the 30-60day Madden-Julian oscillation, have significant derivative effects on climate outside of the tropics, including impacts on rainfall events over the continental United States. Here evidence is presented that the amplitude of the Madden-Julian oscillation during northern winter is also modulated by the 11year solar cycle. The modulation is such that amplitudes and occurrence rates are largest under solar minimum conditions when the quasi-biennial oscillation is in its easterly phase and smallest under solar maximum conditions when the quasi-biennial oscillation is in its westerly phase. However, the available time record (37.3years of satellite measurements) is limited. During the coming solar minimum, at least one additional winter in the solar minimum/easterly category should occur (possibly as early as 2017/2018) during which larger-than-average amplitudes are expected and an initial test of the proposed relationship will be possible.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000401847500048
WOS关键词QUASI-BIENNIAL OSCILLATION ; CLIMATE ; MJO ; MODEL ; QBO
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/27021
专题气候变化
作者单位Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
推荐引用方式
GB/T 7714
Hood, Lon L.. QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum[J]. GEOPHYSICAL RESEARCH LETTERS,2017,44(8).
APA Hood, Lon L..(2017).QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum.GEOPHYSICAL RESEARCH LETTERS,44(8).
MLA Hood, Lon L.."QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum".GEOPHYSICAL RESEARCH LETTERS 44.8(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hood, Lon L.]的文章
百度学术
百度学术中相似的文章
[Hood, Lon L.]的文章
必应学术
必应学术中相似的文章
[Hood, Lon L.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。