GSTDTAP  > 资源环境科学
DOI10.1002/2017WR020905
Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media
Tartakovsky, A. M.1; Panzeri, M.2; Tartakovsky, G. D.3; Guadagnini, A.2
2017-11-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:11
文章类型Article
语种英语
国家USA; Italy
英文摘要

Equations governing flow and transport in randomly heterogeneous porous media are stochastic and scale dependent. In the moment equation (ME) method, exact deterministic equations for the leading moments of state variables are obtained at the same support scale as the governing equations. Computable approximations of the MEs can be derived via perturbation expansion in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for standard deviation smaller than one. Here, we consider steady-state saturated flow in a porous medium with random second-order stationary conductivity field. We show it is possible to identify a support scale , where the typically employed approximate formulations of MEs yield accurate (statistical) moments of a target state variable. Therefore, at support scale and larger, MEs present an attractive alternative to slowly convergent Monte Carlo (MC) methods whenever lead-order statistical moments of a target state variable are needed. We also demonstrate that a surrogate model for statistical moments can be constructed from MC simulations at larger support scales and be used to accurately estimate moments at smaller scales, where MC simulations are expensive and the ME method is not applicable.


Plain Language Summary Equations governing flow and transport in randomly heterogeneous porous media are stochastic and scale dependent. In the moment equation method, exact deterministic equations for the leading moments of state variables are obtained at the same support scale as the governing equations. Computable approximations of these equations can be derived via perturbation expansion in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for standard deviation smaller than one. Here, we consider steady-state saturated flow in a porous medium with random second-order stationary conductivity field. We show it is possible to identify a support scale, where the typically employed approximate formulations of moment equations yield accurate moments of a target state variable.


英文关键词flow in porous media randomness uncertainty quantification scale dependence
领域资源环境
收录类别SCI-E
WOS记录号WOS:000418736700040
WOS关键词STEADY-STATE FLOW ; STOCHASTIC MOMENT EQUATIONS ; LOCALIZED ANALYSES ; PROBABILISTIC COLLOCATION ; DATA ASSIMILATION ; GROUNDWATER-FLOW ; SOLUTE TRANSPORT ; TRANSIENT FLOW ; SUPPORT SCALE ; SPARSE GRIDS
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21860
专题资源环境科学
作者单位1.Pacific Northwest Natl Lab, Computat Math Grp, Richland, WA 99352 USA;
2.Politecn Milan, Dipartimento Ingn Civile & Ambientale, Milan, Italy;
3.Pacific Northwest Natl Lab, Hydrol Grp, Richland, WA USA
推荐引用方式
GB/T 7714
Tartakovsky, A. M.,Panzeri, M.,Tartakovsky, G. D.,et al. Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media[J]. WATER RESOURCES RESEARCH,2017,53(11).
APA Tartakovsky, A. M.,Panzeri, M.,Tartakovsky, G. D.,&Guadagnini, A..(2017).Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media.WATER RESOURCES RESEARCH,53(11).
MLA Tartakovsky, A. M.,et al."Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media".WATER RESOURCES RESEARCH 53.11(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tartakovsky, A. M.]的文章
[Panzeri, M.]的文章
[Tartakovsky, G. D.]的文章
百度学术
百度学术中相似的文章
[Tartakovsky, A. M.]的文章
[Panzeri, M.]的文章
[Tartakovsky, G. D.]的文章
必应学术
必应学术中相似的文章
[Tartakovsky, A. M.]的文章
[Panzeri, M.]的文章
[Tartakovsky, G. D.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。