GSTDTAP  > 地球科学
Cracks in Arctic sea ice turn low clouds on and off
admin
2020-01-10
发布年2020
语种英语
国家美国
领域地球科学
正文(英文)

In the wintertime Arctic, cracks in the ice called "leads" expose the warm ocean directly to the cold air, with some leads only a few meters wide and some kilometers wide. They play a critical role in the Arctic surface energy balance. If we want to know how much the ice is going to grow in winter, we need to understand the impacts of leads.

The extreme contrast in temperature between the warm ocean and the cold air creates a flow of heat and moisture from the ocean to the atmosphere. This flow provides a lead with its own weather system which creates low-level clouds. The prevailing view has been that more leads are associated with more low-level clouds during winter. But University of Utah atmospheric scientists noticed something strange in their study of these leads: when lead occurrence was greater, there were fewer, not more clouds.

In a paper published in Nature Communications, they explain why: wintertime leads rapidly freeze after opening, so most leads have newly frozen ice that shuts off the moisture supply but only some of the heat flow from the ocean, thus causing any low-level clouds to dissipate and accelerating the freezing of sea ice compared to unfrozen leads. Understanding this dynamic, the authors say, will help more accurately represent the impact of winter-time leads on low-level clouds and on the surface energy budget in the Arctic - especially as the Arctic sea ice is declining.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/215627
专题地球科学
推荐引用方式
GB/T 7714
admin. Cracks in Arctic sea ice turn low clouds on and off. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。