GSTDTAP
项目编号1945924
EAGER: Navigating Unmanned Underwater Vehicles (UUVs) at the Ice-water Boundary
Mingxi Zhou (Principal Investigator)
主持机构University of Rhode Island
项目开始年2020
2020-09-01
项目结束日期2022-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费293134(USD)
国家美国
语种英语
英文摘要In the Arctic, air-sea interactions and biological-chemical processes in the ocean are strongly affected by the extent and thickness of sea ice cover. Presently, due to safety concerns, data collection involving Unmanned Underwater Vehicles (UUVs) in the Arctic typically operate far away from the ice-water boundary and are recovered using customized systems. As a consequence, critical scientific processes (e.g., phytoplankton blooms and air-sea exchanges at offshore leads in the sea ice) are under-sampled. Challenges still exist for navigating UUVs in the ice-covered ocean, especially in proximity to the ice shelf. The goal of this project is to develop and test a safe, long-distance autonomous UUV-based instrument for under-ice observations and data collection by designing and implementing a new advanced system for near ice-water interface measurements through the use of multiple sensors and in situ decision-making including artificial intelligence algorithms.

This project aims to develop and test an enhanced Unmanned Underwater Vehicle (UUV) system with an accurate ice-relative localization solution, an in-situ collision avoidance re-planning mechanism, and a robust water-opening detection capability. Specifically, the primary objective is to develop new underwater autonomous sampling capabilities that will provide critical measurements and observations for advancing our knowledge about under-ice biological productivity and the physical-chemical transports at the air-ice-water boundary. To make it adaptable to a variety of UUVs, a suite of low size, weight, power, and cost (SWAP-C) sensors will be selected, and the algorithms will be developed using open-source software. The system will localize the vehicle relative to the ice via fusing the inertial measurements and the perception information (e.g., ice topography, texture, and air bubbles). During under-ice operations, the system will also detect ice keels and extrusions, then adapt its path for collision avoidance if necessary. Finally, the designed navigation system will perform a robust detection of water openings in the sea ice. This will allow a safe UUV surfacing event for transmitting data, updating mission plans, and collecting unique cross-boundary measurements at the ice openings. In this project, the developed navigation system will be integrated on a portable underwater robot and tested in a frozen freshwater pond and a subpolar lake. A compact science sensor suite will also be attached to search for under-ice blooms at the ice-water interface. This project also supports an early career scientist and includes a commitment to education and training by involving undergraduate students in data processing and analysis, as well as outreach and science communication activities that engage a broader audience using varied community and media outlets.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/214391
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Mingxi Zhou .EAGER: Navigating Unmanned Underwater Vehicles (UUVs) at the Ice-water Boundary.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mingxi Zhou (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Mingxi Zhou (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Mingxi Zhou (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。