GSTDTAP
项目编号1936521
Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)
Subhanshu Gupta (Principal Investigator)
主持机构Washington State University
项目开始年2019
2019-10-01
项目结束日期2023-09-30
资助机构US-NSF
项目类别Continuing grant
项目经费66905(USD)
国家美国
语种英语
英文摘要CubeSats are miniaturized, low-weight, low-cost satellites. Due to these properties, constellations of 10s-100s of CubeSats with specialized instruments for studying the space environment provide a new exciting opportunity to understand and predict space weather. The Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission supports the advancement of using constellations of CubeSats for space weather through designing, building, and operating three satellites that together form an ultraviolet telescope for observing the Sun. VISORS has a transformative technological approach; it will be the first distributed telescope using several breakthrough technologies, including: novel photon sieve optics, precision formation flying, and 5G-inspired high data rate communications between the spacecraft. The transformative optics utilized by the mission will allow high spatial and temporal observations of nanoflares that are potentially an important source of heating of the solar corona. The VISORS mission supports STEM education and public outreach. Graduate and undergraduate students will actively participate in all mission stages. The project will also develop an open-source software toolkit to support the design and optimization of CubeSat that can be utilized in classrooms. Further, a hands-on demonstration of the virtual telescope will be developed for a science museum exhibit. This project resulted from the Ideas Lab: Cross-cutting Initiative in CubeSat Innovations, an interdisciplinary program supported by Geosciences, Engineering, and Computer and Information Science and Engineering Directorates.

VISORS will provide a transformational leap in addressing the origins of the processes heating the solar corona by revealing filamentary coronal structures as narrow as 160 milliarcseconds and use the spatial and temporal characteristics of those structures to constrain physical models of nanoflares much more powerfully than the indirect methods used to date. In addition to addressing one of the most fundamental open questions in geospace science, VISORS will validate several breakthrough technologies. The technological innovations range from the demonstration of the first distributed ultraviolet telescope with unprecedented angular resolution, novel photon sieve optics, and CubeSat precision formation flying, to the demonstration of sub-kilometer proximity operations on CubeSat swarms, including low-interference propulsive maneuvers; navigation, control, and autonomy; and 5G-inspired high data-rate inter-CubeSat swarm communication and networking.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/214283
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Subhanshu Gupta .Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS).2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Subhanshu Gupta (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Subhanshu Gupta (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Subhanshu Gupta (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。