GSTDTAP
项目编号1935837
Collaborative Research: Thin Crust Over The Marion Rise: Remelting The Gondwanan Mantle II
Henry Dick (Principal Investigator)
主持机构Woods Hole Oceanographic Institution
项目开始年2019
2019-09-15
项目结束日期2020-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费297889(USD)
国家美国
语种英语
英文摘要Earth is a dynamic planet. Its surface is being continuously created and destroyed at ocean ridges and subduction zones, which comprise the boundaries of the great tectonic plates. These processes create seismic and volcanic hazards as well as generating economic resources, thermal energy, and the planet's oceans and atmosphere. Underlying this is the circulation of the Earth's mantle, largely manifest by upwelling along ocean ridges, and mantle plumes. The latter are upward flows that produce mantle hotspots, such as Hawaii and Iceland. Where ocean ridges pass near mantle hotspots as at Iceland and the Azores Islands in the Atlantic, and at Marion Hotspot in the Indian Ocean, the ocean ridge is greatly elevated and has a chemical composition similar to the associated mantle hotspot. The standard scientific explanation for this is that the volcanic hotspot is created by a mantle plume rooted deep in the mantle, and that the flow of this plume is partially diverted to the adjacent ocean ridge, where it becomes the source of the lavas erupting there. However, there are large differences between ocean rises, and a different process may be responsible for the Marion Hotspot, a remote volcanic feature roughly 1,000 miles southeast of South Africa that sits at the boundary of the African and Antarctic tectonic plates. An international team, led by German, U.S., and Chinese scientists, is working together to test a new hypothesis that the Marion Rise represents the melting of a piece of anomalous mantle set adrift in the deep earth during the breakup of the ancient supercontinent Gondwana. The conventional deep mantle plume hypothesis predicts thickened crust all along the rise, while remelting the Gondwana mantle predicts thin or missing crust along the ridge, with isolated widely spaced local magmatic centers, with the thickest crust located at the intersection of the mantle melting anomaly with the ridge.

This award supports the U.S. participation in a German-U.S.-China collaborative cruise, which is the second of a two expedition program, the first of which was led by the U.S. scientists. The U.S. Scientific Party will direct the geophysical magnetics, gravity, and multibeam mapping survey of the Southwest Indian Ridge west of the Discovery Fracture Zone north of Bouvet Island, and will use this data, in combination with the results of the rock dredging and ROV sampling on the German research vessel Sonne, to map out the extent of the mantle directly exposed on the seafloor, and constrain the crustal thickness where it is not exposed. They will characterize the differences in seafloor topography and tectonics from that seen at magmatically more robust ocean ridges such as the East Pacific Rise and Mid-Atlantic Ridge. In doing this, they will directly test and validate one of the two hypotheses for the origin of the Marion Rise described above.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/214261
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Henry Dick .Collaborative Research: Thin Crust Over The Marion Rise: Remelting The Gondwanan Mantle II.2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Henry Dick (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Henry Dick (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Henry Dick (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。