GSTDTAP
项目编号1925677
Collaborative Research: Development and Application of a Framework for Integrated Geodynamic Earth Models
Juliane Dannberg (Principal Investigator)
主持机构University of Florida
项目开始年2019
2019-09-01
项目结束日期2024-08-31
资助机构US-NSF
项目类别Continuing grant
项目经费972862(USD)
国家美国
语种英语
英文摘要For decades, the geosciences community has dreamed of and worked towards building simulations that can resolve the time and length scales of deformation patterns in the solid Earth observed both globally and regionally. This includes the slow motion of rocks in the Earth's deep interior, the motion of tectonic plates, and smaller scale localized deformation in the interior of and at the boundaries between these plates on time scales ranging from thousands to millions of years. Until recently, neither the computational tools, nor the requisite information about how rocks behave at the temperature and pressures of the Earth's interior were available to allow such simulations with reasonable accuracy. However, with recent advances in the Earth sciences and computing, we are finally at a point where it is possible to develop computational models of the Earth from the deep mantle to surface. This project is aimed at developing a framework for building a Geodynamic Earth Models, based on the widely used community modeling code ASPECT that the PIs have been building for the past 8 years. These simulations have the potential to provide enormous insight into a wide range of topics, including temporal and spatial variations in the motion and deformation of tectonic plates, the flow of magma and the cycling of water through the Earth's interior, the structure of the deep Earth, and landscape evolution. All work will be made available to other scientists through open source software and data sets, including tutorials and documentation modules to help others use this work in practice. In addition, the project will create accessible images, videos, and more elaborate educational material that will be shared with high school and early college students through outreach events. Beyond that, the experience this project will build by creating a complex, multi-physics simulation code running on large leadership-level computing facilities is also important for complex codes needed to address many other scientific grand challenges, such as several of NSF's "Big Ideas".

This project is about the creation of an Integrated Geodynamic Earth Model for the realistic simulation of the Earth from the core-mantle boundary to the surface on time scales of thousands to millions of years. It will address a series of long-standing questions regarding the physical structure of the solid Earth, global and regional deformation patterns, material cycles determined by plate boundaries, and coupled surface evolution. Assimilation and processing of geophysical data sets will generate a Starting Earth Model providing a detailed description of the Earth's thermal-chemical-rheological state from the surface to the core-mantle boundary. High-resolution global simulations will use this detailed description of Earth's physical state to determine how brittle and ductile rheology controls the partitioning of deformation and fault interaction within observed plate boundaries. Building on the Starting Earth Model and global simulations, globally embedded regional simulations will allow it to determine how rheological and buoyancy variations within the Western USA control observed deformation patterns. In combination with fully coupled two-phase fluid transport and reactions, the project will employ globally-embedded regional simulations to estimate global rates and magnitudes of volatile transport within subducting oceanic plates and provide insight into plate boundary and deep mantle volatile flux patterns. Additionally, the project will facilitate the coupling of these simulations to landscape evolution models to determine how surface processes modify temporal variations in subduction dynamics. Finally, this project will lead to the development of new tools for the visualization of these simulation results, and use them for a variety of outreach activities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/213996
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Juliane Dannberg .Collaborative Research: Development and Application of a Framework for Integrated Geodynamic Earth Models.2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Juliane Dannberg (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Juliane Dannberg (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Juliane Dannberg (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。