GSTDTAP
项目编号1923802
Collaborative Research: Understanding substrate limitation and Lithium and Silicon isotope fractionation during secondary clay formation in marine systems
Yuanzhi Tang (Principal Investigator)
主持机构Georgia Tech Research Corporation
项目开始年2020
2020
项目结束日期2022-12-31
资助机构US-NSF
项目类别Standard Grant
项目经费338896(USD)
国家美国
语种英语
英文摘要A long-standing topic of investigation in the field of chemical oceanography is understanding the processes that deliver elements to, and remove them from, seawater. There has long been a "missing sink" in the global marine silicon (Si) budget in that removal to sediments did not appear to balance the inputs from rivers. Several decades ago, it was postulated that "reverse weathering" in marine sediments could be this missing sink. In this process, the weathering process that takes place on land, whereby silicon is removed from minerals and dissolved in water, would be reversed and these minerals would be reconstituted in marine sediments through the formation of clays. Evidence for this process was very difficult to obtain, and only recently have studies using advanced measurement techniques shown that the global magnitude of marine reverse weathering could account for all the missing sink term in the global Si budget. If validated, this means reverse weathering would represent the largest individual sink for marine Si identified to date, with most of this burial occurring in a relatively small area of the ocean, the land-sea interface. Moreover, the continued upward revision of the marine reverse weathering rate has implications for the sequestration of other elements (e.g. iron, aluminum) and for other coastal processes (e.g. ocean acidification, as carbon dioxide is a byproduct of the reverse weathering process). This project aims to understand the most important factors affecting how fast reverse weathering occurs, and developing new approaches to evaluate this process in the field environment. Beyond the scientific pursuits, this project will support an early career researcher, a postdoctoral investigator, a graduate student, and undergraduate interns. It will also support high school outreach through science fair participation and annual scholarships for students wishing to pursue Marine Science education. This project will develop a community outreach activity to be used annually during the Atlanta Science Festival, Georgia's biggest science fair that showcases science and technology to the public. Finally, it will build capacity for silicon isotope measurements in the U.S.

In this project, the investigators propose to understand the driving factors of marine secondary clay formation and facilitate the determination of reaction degree in the field using a novel dual silicon and lithium stable isotope approach. The overarching goals are: 1) to better constrain the geochemical factors, kinetics, and mechanisms involved in secondary clay formation from diatom-produced silica (bSiO2); this will be done by conducting controlled laboratory experiments using pure mineral phases, diatom bSiO2, and artificial seawater; 2) to test the validity of the isolated geochemical factors by conducting mesocosm incubation experiments using field sediment materials, diatom bSiO2, and seawater; and 3) to experimentally determine whether laboratory-derived Li and Si isotope fractionations are valid during secondary clay formation under marine sediment conditions. This work addresses one of the eight Ocean Sciences Priorities identified in The National Research Council's 2015-2025 Decadal Survey of Ocean Sciences, specifically "How have ocean biogeochemical and physical processes contributed to today's climate and its variability, and how will this system change over the next century?" These results have fundamental importance to understanding the factors regulating marine elemental sequestration (e.g. Si, C, Fe, Al, Mg, K) and those driving global climate through oceanic CO2 evolution, a byproduct of the reverse weathering reaction, in marine sediments.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/213889
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Yuanzhi Tang .Collaborative Research: Understanding substrate limitation and Lithium and Silicon isotope fractionation during secondary clay formation in marine systems.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuanzhi Tang (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Yuanzhi Tang (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Yuanzhi Tang (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。