GSTDTAP
项目编号1921596
Collaborative Research: Sundowner Winds EXperiment (SWEX) in Santa Barbara, California
Zhien Wang (Principal Investigator)
主持机构University of Colorado at Boulder
项目开始年2020
2020
项目结束日期2022-12-31
资助机构US-NSF
项目类别Standard Grant
项目经费136814(USD)
国家美国
语种英语
英文摘要Wildfires are among the greatest natural hazards in the Western U.S. and other parts of the world. The numerous tragic events in recent years in California have exposed the great vulnerability of the population to wildfires and the critical need to improve understanding and enhance predictability of windstorms in complex terrain. Coastal Santa Barbara County (SB), with a population exceeding 130,000 inhabitants, is among the most exposed communities to wildfire hazards in southern California. The Santa Ynez Mountains rise abruptly from coastal SB separating the Pacific Ocean on its south face from the Santa Ynez Valley on its north face. Downslope, dry and gusty windstorms are frequently observed on the southern-facing slopes of the Santa Ynez Mountains. These winds typically intensify around sunset and throughout the night, and are known as "Sundowner winds" or "Sundowners". They are considered the most significant fire-weather regime in coastal SB and pose hazardous conditions to aviation. They have enhanced the severity of all major wildfires affecting the SB coastal population. Therefore, improved weather warnings and forecast lead time, including spatiotemporal specificity of where winds will be strongest, are critical to increase resilience to wildfires. Sundowners exhibit large spatiotemporal variability and are driven by unique complex mechanisms.

The Sundowner Winds Experiment (SWEX) will investigate these unique aspects of Sundowners to advance the understanding and predictability of these winds, while providing rich data sets for developing new theories of downslope windstorms in coastal environments with similar geographic and climatic characteristics. This will be accomplished with strategic meteorological observations of the atmospheric processes hypothesized to modulate Sundowner winds intensity and spatial variability. These results will significantly contribute to improve the predictability of windstorms in complex terrain in coastal environments, with significant impacts to large communities living in fire prone areas. The project will provide key outreach materials for dissemination to government agencies and the media and will educate the public about fire weather and natural disasters. Moreover, the project will support the development of new educational courses, and the training of undergraduate and graduate students, including minorities, in six universities in the U.S.

Sundowners spatiotemporal characteristics are controlled by complex interactions between atmospheric processes occurring upstream, in the Santa Ynez Valley and San Rafael Mountains, and downstream due to the influence of a cool and stable marine boundary layer. The SWEX campaign is designed to enhance spatial measurements to resolve local circulations and vertical profiles from the boundary layer to the mid-troposphere, and from the SB channel to the Santa Ynez Valley. These observations will be used to test hypotheses concerning the mechanisms controlling Sundowner winds, evaluate mesoscale simulations and improve lead time forecasts of Sundowners. More specifically, the multi-sensor platforms and aircraft will be utilized to investigate how the structure and dynamics of the marine and continental Boundary Layers (BL) influence mountain flows during Sundowners and undisturbed periods, including intensity, timing and geographic characteristics of downslope winds, temperatures and humidity. These measurements will enable to examine underlying mechanisms relating high amplitude mountain waves, critical layers, and surface wind intensity leeward of the Santa Ynez Mountains. These observations will be utilized to investigate how variations in BL structure and tropospheric stability control mountain wave flows and the lee-slope jet, and the importance of these mechanisms for the predictability of Sundowner winds. SWEX brings cutting-edge science, the state-of-art facilities at National Center for Atmospheric Research and multiple instrumental platforms to bear on this important problem. It will build linkages with those responsible for predictions and fire response in a region that is representative of many areas with similar vulnerabilities. SWEX will improve the capability of the National Weather Service to forecast weather hazards in the Los Angeles area, specifically in coastal SB. Thus this project has substantial broader impacts.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/213844
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Zhien Wang .Collaborative Research: Sundowner Winds EXperiment (SWEX) in Santa Barbara, California.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhien Wang (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Zhien Wang (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Zhien Wang (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。