GSTDTAP
项目编号1854946
PREEVENTS Track 2: Collaborative Research: Geomorphic Versus Climatic Drivers of Changing Coastal Flood Risk
Stefan Talke (Principal Investigator)
主持机构Portland State University
项目开始年2019
2019-06-01
项目结束日期2022-05-31
资助机构US-NSF
项目类别Continuing grant
项目经费328606(USD)
国家美国
语种英语
英文摘要Coastal flooding is one of the most dangerous and damaging natural hazards that societies face, and coastal development and climate change are causing a dramatic rise in vulnerability. Since the 19th century, estuary channels have typically been deepened and widened by a factor of two or three, harbor entrances have been deepened and streamlined, and a large proportion of wetlands have been filled over and replaced with neighborhoods. Such geomorphic changes increase flood risk by reducing natural resistance to storm surge and tides. Similarly, sea level rise and climate-modulated variations in storm characteristics such as intensity, size and track path also alter flood risk. The overarching goal of the proposed research project is to reveal and contrast the mechanisms by which these geomorphic and climatic changes alter flood risk. This goal will be met using a combination of computational modeling, historical climate and storm surge data analysis, and theory-based synthesis. The study will provide support for a postdoctoral research associate and several graduate students and undergraduates, including underrepresented groups. It will improve the well-being of communities within urbanized harbors and estuaries by highlighting coastal development practices that can worsen coastal flooding. The project plan increases scientific literacy and engagement, and connects the research to applications through interactions with local stakeholders and governments, as well as the US Geological Survey and the US Army Corps of Engineers.

The project will improve the understanding and separation of climatic and geomorphic factors in coastal flooding through several elements of novel research and technical innovation. The investigators will use a unique tide-gauge data set that extends back to the 19th century together with contemporary, retrospective, and idealized hydrodynamic models to elucidate system sensitivities. Well-known, simplified insights into tidal dynamics will be tested for storm surge, then used to help interpret how altered local topography, bathymetry and wetland area have changed frictional damping and long-wave mechanics. A combined analysis of climate, storm characteristics, and morphologic change will identify the modes and pathways through which climate variability and bathymetric change modulate storms surges. Advanced non-stationary univariate and multivariate statistical models will be developed and employed to incorporate these changes and assess how statistical properties relevant for coastal design and risk assessments respond. A flood model inter-comparison workshop will help quantify relevant modeling sensitivities, which will help to improve estuary and floodplain predictions for the academic and operational forecasting community.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/213391
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Stefan Talke .PREEVENTS Track 2: Collaborative Research: Geomorphic Versus Climatic Drivers of Changing Coastal Flood Risk.2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stefan Talke (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Stefan Talke (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Stefan Talke (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。