GSTDTAP
项目编号1841006
Collaborative Research: CubeSat: High-Cadence Measurement of Solar Flare Hard X-rays
Lindsay Glesener (Principal Investigator)
主持机构University of Minnesota-Twin Cities
项目开始年2019
2019-02-01
项目结束日期2023-01-31
资助机构US-NSF
项目类别Standard Grant
项目经费663607(USD)
国家美国
语种英语
英文摘要The IMpulsive Phase Rapid Energetic Solar Spectrometer (IMPRESS) experiment is a CubeSat science mission to study hard X-ray emission from solar flares. IMPRESS will develop a new CubeSat-based capability to observe a wide range of solar flares (from microflares to X class flares) with high time and energy resolutions. These new observations of solar hard X-ray emissions will address outstanding problems in high-energy solar physics and advance our scientific understanding of solar flares, which play an important role in the development of space weather in the near-Earth environment. The project will also support integration of research and education to develop a knowledgeable STEM workforce. The project will support an early career female PI and provide her an opportunity to lead a CubeSat mission. This is important because it is a step towards developing senior leadership. Women are under-represented at senior leadership positions in geospace sciences.

The Impulsive Phase Rapid Energetic Solar Spectrometer (IMPRESS) is a solar hard X-ray (HXR) spectrometer based on proven instrument concepts and carried on a 3U CubeSat platform. IMPRESS will perform HXR spectroscopy of solar flares in the rising phase of Solar Cycle 25. The target launch date is late 2021 into a Low Earth Orbit (LEO) with an inclination angle less than 60? and altitudes greater than 450 km. The scientific objectives of the IMPRESS mission are (1) to investigate flare electron acceleration timescales by measuring short (<2 second) spikes in HXR time profiles; (2) to investigate electron beaming in solar flares via stereoscopic HXR directivity measurements; (3) in collaboration with new space-based instruments, to provide a complete assessment of flare-accelerated electron distributions from thermal to non-thermal energies; (4) to develop and demonstrate a high-energy radiation detector that can measure a vast range of brightnesses in solar flares, precipitating electron microbursts, and other astrophysical bursts without pileup or saturation. This project will provide training and education opportunities for students at all levels (freshman through graduate students). The project will also engage students from a local community college CubeSat design and development phase. Solar activity is the ultimate source of all space weather and IMPRESS will study the fundamental particle acceleration that occurs in flares as a way to better understand the processes which impact earth and the geospace environment.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/212988
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Lindsay Glesener .Collaborative Research: CubeSat: High-Cadence Measurement of Solar Flare Hard X-rays.2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lindsay Glesener (Principal Investigator)]的文章
百度学术
百度学术中相似的文章
[Lindsay Glesener (Principal Investigator)]的文章
必应学术
必应学术中相似的文章
[Lindsay Glesener (Principal Investigator)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。