GSTDTAP  > 地球科学
Geomagnetic jerks finally reproduced and explained
admin
2019-04-22
发布年2019
语种英语
国家美国
领域地球科学
正文(英文)
IMAGE

IMAGE: Visualization of the interior of the Earth's core, as represented by a computer simulation model (view of the equatorial plane and a spherical surface near the inner core, seen from... view more 

Credit: © Aubert et al./IPGP/CNRS Photo library

Initially described in 1978, geomagnetic jerks are unpredictable events that abruptly accelerate the evolution of the Earth's magnetic field, and skew predictions of its behaviour on a multi-year scale. Our magnetic field affects numerous human activities, ranging from establishing the direction in smartphones to the flight of low-altitude satellites. It is therefore essential to accurately predict its evolution. Still, geomagnetic jerks have presented a problem for geophysicists for over forty years.

The Earth's magnetic field is produced by the circulation of matter within its metallic core, via the energy released when this core cools. Researchers know of two types of movements that cause two types of variations in the magnetic field: those resulting from slow convection movement, which can be measured on the scale of a century, and those resulting from "rapid" hydromagnetic waves, which can be detected on the scale of a few years. They suspected that the latter played a role in the jerks, but the interaction of these waves with slow convection, along with their mechanism of propagation and amplification, had yet to be revealed.

To solve this mystery, Julien Aubert from l'Institut de physique du globe de Paris (CNRS/IPGP/IGN/Université de Paris) developed, with a colleague from the Technical University of Denmark (DTU), a computer simulation very close to the physical conditions of our core. The simulation required the equivalent of 4 million hours of calculation, and was carried out thanks to the supercomputers of GENCI.

Researchers were subsequently able to reproduce the succession of events leading to geomagnetic jerks, which arise in the simulation from hydromagnetic waves emitted in the inner core. These waves are focused and amplified as they approach the core's surface, causing magnetic disturbances comparable in all ways to the jerks observed.

The digital reproduction and comprehension of these jerks paves the way for better predictions of the Earth's magnetic field. Identifying the cause of magnetic field variations could also help geophysicists study the physical properties of the Earth's core and inner mantle.

###

This research project was financed by the Fondation Simone et Cino Del Duca of Institut de France, which supports fundamental research in the Earth Sciences through one of its scientific grants.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert! - Earth Science
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/128532
专题地球科学
推荐引用方式
GB/T 7714
admin. Geomagnetic jerks finally reproduced and explained. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。