GSTDTAP  > 地球科学
Know your enemy—lab builds an arsenal to fight antibiotic-resistant bacteria
admin
2018-10-09
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
Gram-negative bacteria's thick outer membrane prevents entry of toxic molecules, including antibiotics. Credit: Microbiology Concepts, microbiologyconcepts.blogspot.com/2017/03/bacteria.html

To fight your enemies, it helps to know their weaknesses. And, the more specific your knowledge, the easier it is to undermine their defenses. If your enemy sits safe behind a giant wall, for example, its valuable to know how your foe constructed it, what materials they used, and what cracks you could exploit.

We share a global enemy: antibiotic-resistant bacteria. According to the Centers for Disease Control and Prevention (CDC), "without urgent action, many modern medicines could become obsolete, turning event common infections into deadly threats." Certain bacteria, so-called Gram-negative bacteria, have a thick outer defense that protects them from toxins, antibiotics included.

To combat this growing crisis, researchers in the Kahne Lab meticulously document how our enemies work. During the last several years, they identified a number of previously unknown molecular machines and processes that build the bacteria's stubborn barrier, called the outer . With these discoveries, they're starting to unravel its weaknesses.

Now, in a new paper published in the Journal of the American Chemical Society, Professor Daniel Kahne along with postdoctoral researcher Ran Xie and graduate student Rebecca J. Taylor, describe their latest findings. Gram-negative bacteria build their outer membrane, they write, with a burly glycolipid called lipopolysaccharide (LPS). So, if we could prevent LPS from reaching the outer membrane, their defense could weaken.

"To understand the factors that influence LPS transport, we developed a quantitative method to monitor transport rates," the authors report. Previously, the team designed a system to understand how LPS transport occurred. Most recently, they used a fluorescent material that binds to LPS to measure how much, and how quickly, it accumulates in the outer membrane. In addition, the team used their fluorescence-based test to learn which molecular components are integral to LPS transport. If, for example, the bacteria rely on one machine to build their barrier, researchers could investigate how to dismantle the machine and, therefore, the defense.

With their novel fluorescence-based tool, the team discovered crucial new details about LPS transport. ATP hydrolysis—the process by which the cell produces energy—is in fact integral to LPS transport. If transport stops, ATP hydrolysis stops. In addition, even if the cell has LPS in reserve and energy to spare, it will still stop transport. The team determined that the translocon—the machine that carries the LPS across the cell's membranes—controls the movement. "Using mutants of the machinery, we find that the final amount of LPS delivered into the membrane depends on the affinity of the translocon for LPS."

Of course, more research is required to understand how the and mechanisms in Gram-negative function (and malfunction). But the Kahne Lab's investigative work could one day lead to new treatments to combat antibiotic resistance and save lives, globally.

Explore further: Novel functional insight in protein complex, possible new target for antibiotics

More information: Ran Xie et al, Outer Membrane Translocon Communicates with Inner Membrane ATPase To Stop Lipopolysaccharide Transport, Journal of the American Chemical Society (2018). DOI: 10.1021/jacs.8b07656

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/123916
专题地球科学
推荐引用方式
GB/T 7714
admin. Know your enemy—lab builds an arsenal to fight antibiotic-resistant bacteria. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。