GSTDTAP  > 地球科学
Scientists propose new method to correct common power problem in microgrids
admin
2017-06-07
发布年2017
语种英语
国家美国
领域地球科学
正文(英文)

Scientists from the Northeastern University, China, have developed a new method to diagnose a serious electrical problem in microgrids. They have published their work in IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the Institute of Electrical and Electronic Engineers (IEEE) and the Chinese Association of Automation.

Microgrids are island-like pods of generation with bridges to the main power grid. If power supplied by the main grid is disrupted, the microgrid can disconnect and continuing supplying power locally.

"In response to societal requirements, [the] microgrid system has received considerable attention," write Prof. Zhanshan Wang and Prof. Huaguang Zhang. "The reliability of the inverter is considered an important factor to guarantee the high quality, continuousness, and safe operation of the microgrid."

The inverter takes the direct current supplied by the main grid and converts it to alternating current, which household electronics use. Power flows through the circuit from the source to a computer or coffeemaker. When the appliance is no longer needed, a interrupts the circuit, rerouting the current to wherever else it's needed. But sometimes the switch sticks, and the current continues to flow.

"[An open-switch fault] often affects the normal operation of the entire drive system and has many serious influences," says Wang. "For example, [it can cause]... overcurrent stress to other power switches or electronic components... low efficiency; [and] high repair costs."

The switch can be flipped back and the problem corrected—if grid managers know there's a fault and where it is. A switch fault, which can cause an electrical fire, may not be obvious until the fallout becomes obvious. With so many switches throughout the microgrid system, it's nearly impossible to determine which one is at fault.

That's the problem this research team set out to solve. They developed an algorithm to accurately identify multiple signals at multiple levels in the circuit, which can determine if a switch fault exists. The location of the faulty signals is identified through an artificial neural network—a series of connected computers that learns to process information based on the information itself.

The combination of the algorithm and the neural network can detect and identify the exact open-switch , according to the researchers. Since the detection and identification occurs simultaneously, the scientists also say that their method can improve the reliability, efficiency and cost of the .

Explore further: New innovation in modeling and designing power grids

More information: Zhanjun Huang et al, Multilevel feature moving average ratio method for fault diagnosis of the microgrid inverter switch, IEEE/CAA Journal of Automatica Sinica (2017). DOI: 10.1109/JAS.2017.7510496

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/122974
专题地球科学
推荐引用方式
GB/T 7714
admin. Scientists propose new method to correct common power problem in microgrids. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。