GSTDTAP  > 地球科学
Untangling the role of climate on sediment and reef evolution over millennial timescales
admin
2018-03-27
发布年2018
语种英语
国家美国
领域地球科学
正文(英文)
a) map shows the extend of the 2 regions (i-north, ii-south) of the GBR used in this study. b) background map shows the average rainfall annual distribution based on 30-year records (1961-1990)encompassing several ENSO events (7 El Ni?no - 5 La Ni?na). White lines highlightprecipitation 0.5 m/a contours. Red arrows define prevailing annual offshore wave directions scaled based on their annualactivity. Wave heights (H) imposed for the considered. Credit: Map a) Project 3DGBR -eAtlas.org.au).Map b) Source: Bureau of Meteorology

Climatic variability like precipitation changes or increase in extreme events such as storms and tropical cyclones is known to significantly modify the Earth's surface. Yet, our understanding of how sediment dynamics and reef evolution might respond to these changes is still limited.

In a recent study, a team of researchers from the University of Sydney's School of Geosciences has designed a new model that simulates sediment transport from mountains to coasts, reworking of marine sediments by wave-induced currents, and development of .

Using the Great Barrier Reef as their study case, they estimated the evolution of the region over the last 14,000 years and showed that (1) high sediment loads from catchments erosion prevented coral growth during the early phase of and favoured deep offshore sediment deposition; (2) how the fine balance between climate, sea level, and margin physiography enabled coral reefs to thrive under limited shelf sedimentation rates at 6,000 years before present; and, (3) how over the last 3,000 years, the decrease of accommodation space led to the lateral extension of coral reefs consistent with available observational data.

By validating model results against geological observations, the study indicates that changes in runoff, and wave energy have profoundly affected the past evolution of the Great Barrier Reef not only in regard to reefs evolution but also sediment fate from source-to-sink.

Even though the actual rate of global warming far exceeds that of any previous episodes in the past 14,000 years, large changes in global climate have occurred periodically throughout Earth's history.

Knowing how these past climatic changes have altered from landmasses to coasts and how influenced reef development help to identify specific patterns and improve future predictions. The new proposed model could allow a better quantification of the impacts that will likely occur under changing climate and could be considered in future ocean resources and land use management.

Explore further: Dying reefs bigger threat to coasts than rising seas

More information: T. Salles, X. Ding, J.M. Webster, A. Vila-Concejo, G. Borcard, and J. Pall - A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times, Scientific Reports, (SREP-17-54438)

URL查看原文
来源平台Science X network
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/121745
专题地球科学
推荐引用方式
GB/T 7714
admin. Untangling the role of climate on sediment and reef evolution over millennial timescales. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。