GSTDTAP

浏览/检索结果: 共7条,第1-7条 帮助

已选(0)清除 条数/页:   排序方式:
UNCTAD发布报告《关键矿产供应链、贸易流和附加值》 快报文章
地球科学快报,2024年第1期
作者:  刘学
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:22/0  |  提交时间:2024/01/10
Critical minerals  lithium  cobalt  graphite  
UNCTAD发布报告《关键矿产供应链、贸易流和附加值》 快报文章
地球科学快报,2024年第1期
作者:  刘学
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:5/0  |  提交时间:2024/01/10
Critical minerals  lithium  cobalt  graphite  
UNCTAD发布报告《关键矿产供应链、贸易流和附加值》 快报文章
地球科学快报,2024年第1期
作者:  刘学
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:497/0  |  提交时间:2024/01/10
Critical minerals  lithium  cobalt  graphite  
澳大利亚发布《2021年澳大利亚部分关键矿产展望》 快报文章
地球科学快报,2021年第12期
作者:  刘学
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:442/0  |  提交时间:2021/06/24
critical minerals  Australia  rare earth  cobalt  graphite  vanadium  
2021年全球天然石墨产量将增长7.6% 快报文章
地球科学快报,2021年第2期
作者:  王晓晨
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:448/0  |  提交时间:2021/01/25
natural graphite  output  
UNCTAD指出充电电池原材料需求激增 快报文章
地球科学快报,2020年第13期
作者:  刘学
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:368/0  |  提交时间:2020/07/09
battery raw materials  lithium  natural graphite  
Gram-scale bottom-up flash graphene synthesis 期刊论文
NATURE, 2020, 577 (7792) : 647-651
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source  when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.


Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.