GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Oceanic forcing of penultimate deglacial and last interglacial sea-level rise 期刊论文
NATURE, 2020, 577 (7792) : 660-+
作者:  Rizal, Yan;  Westaway, Kira E.;  Zaim, Yahdi;  van den Bergh, Gerrit D.;  Bettis, E. Arthur, III;  Morwood, Michael J.;  Huffman, O. Frank;  Grun, Rainer;  Joannes-Boyau, Renaud;  Bailey, Richard M.;  Sidarto;  Westaway, Michael C.;  Kurniawan, Iwan;  Moore, Mark W.;  Storey, Michael;  Aziz, Fachroel;  Suminto;  Zhao, Jian-xin;  Aswan;  Sipola, Maija E.;  Larick, Roy;  Zonneveld, John-Paul;  Scott, Robert;  Putt, Shelby;  Ciochon, Russell L.
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences(1-3) despite both periods undergoing similar changes in global mean temperature(4,5) and forcing from greenhouse gases(6). Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation(7), understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging(2). Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves(8). This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss(9-12) analogous to ongoing changes in the Antarctic(13,14) and Greenland(15) ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales(16), with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin(9,12,17). Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.


  
Synchronous Strengthening of the Indian and East Asian Monsoons in Response to Global Warming Since the Last Deglaciation 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (7) : 3944-3952
作者:  Jiang, Wenying;  Leroy, Suzanne A. G.;  Yang, Shiling;  Zhang, Enlou;  Wang, Luo;  Yang, Xiaoxiao;  Rioual, Patrick
收藏  |  浏览/下载:9/0  |  提交时间:2019/11/26
Asian summer monsoon  pollen records  lake sediments  last deglaciation  Holocene  
Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene 期刊论文
GLOBAL CHANGE BIOLOGY, 2018, 24 (5) : 2182-2197
作者:  Santibanez, Pamela A.;  Maselli, Olivia J.;  Greenwood, Mark C.;  Grieman, Mackenzie M.;  Saltzman, Eric S.;  McConnell, Joseph R.;  Priscu, John C.
收藏  |  浏览/下载:18/0  |  提交时间:2019/04/09
Antarctic ice core  early Holocene  Last Deglaciation  Last Glacial Maximum  prokaryotes  West Antarctic Ice Sheet Divide  
Asynchronous warming and delta O-18 evolution of deep Atlantic water masses during the last deglaciation 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (42) : 11075-11080
作者:  Zhang, Jiaxu;  Liu, Zhengyu;  Brady, Esther C.;  Oppo, Delia W.;  Clark, Peter U.;  Jahn, Alexandra;  Marcott, Shaun A.;  Lindsay, Keith
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
Atlantic water masses  last deglaciation  oxygen isotopes  deep ocean warming