GSTDTAP

浏览/检索结果: 共30条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Cratering Records in the Chang’e-5 Mare Unit: Filling the “Age Gap” of the Lunar Crater Chronology and Preparation for its Re-calibration 期刊论文
Geophysical Research Letters, 2021
作者:  Le Qiao;  Luyuan Xu;  Yazhou Yang;  Minggang Xie;  Jian Chen;  Kun Fang;  Zongcheng Ling
收藏  |  浏览/下载:11/0  |  提交时间:2021/11/15
A Combined Rock Magnetic and Meteorological Investigation of the Precipitation Boundary across the Tibetan Plateau 期刊论文
Geophysical Research Letters, 2021
作者:  Wen-Xiao Ning;  Jin-Bo Zan;  Sheng-Li Yang;  Xiao-Min Fang;  Miao-Miao Shen;  Jian Kang;  Yuan-Long Luo;  Shu-Wen Wang
收藏  |  浏览/下载:21/0  |  提交时间:2021/08/30
Peta–electron volt gamma-ray emission from the Crab Nebula 期刊论文
Science, 2021
作者:  The LHAASO Collaboration*†;  Zhen Cao;  F. Aharonian;  Q. An;  Axikegu;  L. X. Bai;  Y. X. Bai;  Y. W. Bao;  D. Bastieri;  X. J. Bi;  Y. J. Bi;  H. Cai;  J. T. Cai;  Zhe Cao;  J. Chang;  J. F. Chang;  B. M. Chen;  E. S. Chen;  J. Chen;  Liang Chen;  Liang Chen;  Long Chen;  M. J. Chen;  M. L. Chen;  Q. H. Chen;  S. H. Chen;  S. Z. Chen;  T. L. Chen;  X. L. Chen;  Y. Chen;  N. Cheng;  Y. D. Cheng;  S. W. Cui;  X. H. Cui;  Y. D. Cui;  B. D’Ettorre Piazzoli;  B. Z. Dai;  H. L. Dai;  Z. G. Dai;  Danzengluobu;  D. della Volpe;  X. J. Dong;  K. K. Duan;  J. H. Fan;  Y. Z. Fan;  Z. X. Fan;  J. Fang;  K. Fang;  C. F. Feng;  L. Feng;  S. H. Feng;  Y. L. Feng;  B. Gao;  C. D. Gao;  L. Q. Gao;  Q. Gao;  W. Gao;  M. M. Ge;  L. S. Geng;  G. H. Gong;  Q. B. Gou;  M. H. Gu;  F. L. Guo;  J. G. Guo;  X. L. Guo;  Y. Q. Guo;  Y. Y. Guo;  Y. A. Han;  H. H. He;  H. N. He;  J. C. He;  S. L. He;  X. B. He;  Y. He;  M. Heller;  Y. K. Hor;  C. Hou;  X. Hou;  H. B. Hu;  S. Hu;  S. C. Hu;  X. J. Hu;  D. H. Huang;  Q. L. Huang;  W. H. Huang;  X. T. Huang;  X. Y. Huang;  Z. C. Huang;  F. Ji;  X. L. Ji;  H. Y. Jia;  K. Jiang;  Z. J. Jiang;  C. Jin;  T. Ke;  D. Kuleshov;  K. Levochkin;  B. B. Li;  Cheng Li;  Cong Li;  F. Li;  H. B. Li;  H. C. Li;  H. Y. Li;  Jian Li;  Jie Li;  K. Li;  W. L. Li;  X. R. Li;  Xin Li;  Xin Li;  Y. Li;  Y. Z. Li;  Zhe Li;  Zhuo Li;  E. W. Liang;  Y. F. Liang;  S. J. Lin;  B. Liu;  C. Liu;  D. Liu;  H. Liu;  H. D. Liu;  J. Liu;  J. L. Liu;  J. S. Liu;  J. Y. Liu;  M. Y. Liu;  R. Y. Liu;  S. M. Liu;  W. Liu;  Y. Liu;  Y. N. Liu;  Z. X. Liu;  W. J. Long;  R. Lu;  H. K. Lv;  B. Q. Ma;  L. L. Ma;  X. H. Ma;  J. R. Mao;  A. Masood;  Z. Min;  W. Mitthumsiri;  T. Montaruli;  Y. C. Nan;  B. Y. Pang;  P. Pattarakijwanich;  Z. Y. Pei;  M. Y. Qi;  Y. Q. Qi;  B. Q. Qiao;  J. J. Qin;  D. Ruffolo;  V. Rulev;  A. Saiz;  L. Shao;  O. Shchegolev;  X. D. Sheng;  J. Y. Shi;  H. C. Song;  Yu. V. Stenkin;  V. Stepanov;  Y. Su;  Q. N. Sun;  X. N. Sun;  Z. B. Sun;  P. H. T. Tam;  Z. B. Tang;  W. W. Tian;  B. D. Wang;  C. Wang;  H. Wang;  H. G. Wang;  J. C. Wang;  J. S. Wang;  L. P. Wang;  L. Y. Wang;  R. N. Wang;  Wei Wang;  Wei Wang;  X. G. Wang;  X. J. Wang;  X. Y. Wang;  Y. Wang;  Y. D. Wang;  Y. J. Wang;  Y. P. Wang;  Z. H. Wang;  Z. X. Wang;  Zhen Wang;  Zheng Wang;  D. M. Wei;  J. J. Wei;  Y. J. Wei;  T. Wen;  C. Y. Wu;  H. R. Wu;  S. Wu;  W. X. Wu;  X. F. Wu;  S. Q. Xi;  J. Xia;  J. J. Xia;  G. M. Xiang;  D. X. Xiao;  G. Xiao;  H. B. Xiao;  G. G. Xin;  Y. L. Xin;  Y. Xing;  D. L. Xu;  R. X. Xu;  L. Xue;  D. H. Yan;  J. Z. Yan;  C. W. Yang;  F. F. Yang;  J. Y. Yang;  L. L. Yang;  M. J. Yang;  R. Z. Yang;  S. B. Yang;  Y. H. Yao;  Z. G. Yao;  Y. M. Ye;  L. Q. Yin;  N. Yin;  X. H. You;  Z. Y. You;  Y. H. Yu;  Q. Yuan;  H. D. Zeng;  T. X. Zeng;  W. Zeng;  Z. K. Zeng;  M. Zha;  X. X. Zhai;  B. B. Zhang;  H. M. Zhang;  H. Y. Zhang;  J. L. Zhang;  J. W. Zhang;  L. X. Zhang;  Li Zhang;  Lu Zhang;  P. F. Zhang;  P. P. Zhang;  R. Zhang;  S. R. Zhang;  S. S. Zhang;  X. Zhang;  X. P. Zhang;  Y. F. Zhang;  Y. L. Zhang;  Yi Zhang;  Yong Zhang;  B. Zhao;  J. Zhao;  L. Zhao;  L. Z. Zhao;  S. P. Zhao;  F. Zheng;  Y. Zheng;  B. Zhou;  H. Zhou;  J. N. Zhou;  P. Zhou;  R. Zhou;  X. X. Zhou;  C. G. Zhu;  F. R. Zhu;  H. Zhu;  K. J. Zhu;  X. Zuo
收藏  |  浏览/下载:14/0  |  提交时间:2021/07/27
Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos 期刊论文
Nature Communications, 2021
作者:  Shui-Jiong Wang;  Wenzhong Wang;  Jian-Ming Zhu;  Zhongqing Wu;  Jingao Liu;  Guilin Han;  Fang-Zhen Teng;  Shichun Huang;  Hongjie Wu;  Yujian Wang;  Guangliang Wu;  Weihan Li
收藏  |  浏览/下载:7/0  |  提交时间:2021/01/22
Crustal structure across the extinct mid‐ocean ridge in South China Sea from OBS receiver functions: insights into the spreading rate and magma supply prior to the ridge cessation 期刊论文
Geophysical Research Letters, 2020
作者:  Tran Danh Hung;  Ting Yang;  Ba Manh Le;  Youqiang Yu;  Mei Xue;  Baohua Liu;  Chenguang Liu;  Jian Wang;  Mohan Pan;  Phan Thien Huong;  Fang Liu;  Jason P. Morgan
收藏  |  浏览/下载:8/0  |  提交时间:2021/01/22
Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease 期刊论文
Science, 2020
作者:  Wenhao Dai;  Bing Zhang;  Xia-Ming Jiang;  Haixia Su;  Jian Li;  Yao Zhao;  Xiong Xie;  Zhenming Jin;  Jingjing Peng;  Fengjiang Liu;  Chunpu Li;  You Li;  Fang Bai;  Haofeng Wang;  Xi Cheng;  Xiaobo Cen;  Shulei Hu;  Xiuna Yang;  Jiang Wang;  Xiang Liu;  Gengfu Xiao;  Hualiang Jiang;  Zihe Rao;  Lei-Ke Zhang;  Yechun Xu;  Haitao Yang;  Hong Liu
收藏  |  浏览/下载:18/0  |  提交时间:2020/06/22
Engineering covalently bonded 2D layered materials by self-intercalation 期刊论文
NATURE, 2020, 581 (7807) : 171-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Two-dimensional (2D) materials(1-5) offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants(6,7)  however, post-growth intercalation has usually been limited to alkali metals(8-10). Here we show that the self-intercalation of native atoms(11,12) into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites(7,13). By performing growth under high metal chemical potential(14,15) we can access a range of tantalum-intercalated TaS(Se)(y), including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.


  
Laser spectroscopy of pionic helium atoms 期刊论文
NATURE, 2020, 581 (7806) : 37-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Charged pions(1) are the lightest and longest-lived mesons. Mesonic atoms are formed when an orbital electron in an atom is replaced by a negatively charged meson. Laser spectroscopy of these atoms should permit the mass and other properties of the meson to be determined with high precision and could place upper limits on exotic forces involving mesons (as has been done in other experiments on antiprotons(2-9)). Determining the mass of the pi(-) meson in particular could help to place direct experimental constraints on the mass of the muon antineutrino(10-13). However, laser excitations of mesonic atoms have not been previously achieved because of the small number of atoms that can be synthesized and their typically short (less than one picosecond) lifetimes against absorption of the mesons into the nuclei(1). Metastable pionic helium (pi He-4(+)) is a hypothetical(14-16) three-body atom composed of a helium-4 nucleus, an electron and a pi(-) occupying a Rydberg state of large principal (n approximate to 16) and orbital angular momentum (l approximate to n - 1) quantum numbers. The pi He-4(+) atom is predicted to have an anomalously long nanosecond-scale lifetime, which could allow laser spectroscopy to be carried out(17). Its atomic structure is unique owing to the absence of hyperfine interactions(18,19) between the spin-0 pi(-) and the He-4 nucleus. Here we synthesize pi He-4(+) in a superfluid-helium target and excite the transition (n, l) = (17, 16) -> (17, 15) of the pi(-)-occupied pi He-4(+) orbital at a near-infrared resonance frequency of 183,760 gigahertz. The laser initiates electromagnetic cascade processes that end with the nucleus absorbing the pi(-) and undergoing fission(20,21). The detection of emerging neutron, proton and deuteron fragments signals the laser-induced resonance in the atom, thereby confirming the presence of pi He-4(+). This work enables the use of the experimental techniques of quantum optics to study a meson.


Long-lived pionic helium atoms (composed of a helium-4 nucleus, an electron and a negatively charged pion) are synthesized in a superfluid-helium target, as confirmed by laser spectroscopy involving the pion-occupied orbitals.


  
Nagaoka ferromagnetism observed in a quantum dot plaquette 期刊论文
NATURE, 2020, 579 (7800) : 528-533
作者:  Yu, Yong;  Ma, Fei;  Luo, Xi-Yu;  Jing, Bo;  Sun, Peng-Fei;  Fang, Ren-Zhou;  Yang, Chao-Wei;  Liu, Hui;  Zheng, Ming-Yang;  Xie, Xiu-Ping;  Zhang, Wei-Jun;  You, Li-Xing;  Wang, Zhen;  Chen, Teng-Yun;  Zhang, Qiang;  Bao, Xiao-Hui;  Pan, Jian-Wei
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

A quantum dot device designed to host four electrons is used to demonstrate Nagaoka ferromagnetism-a model of itinerant magnetism that has so far been limited to theoretical investigation.


Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers(1). An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades(2,3). Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots(4) to demonstrate Nagaoka ferromagnetism(5). This form of itinerant magnetism has been rigorously studied theoretically(6-9) but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.


  
Late Cretaceous Neo-Tethyan slab roll-back: Evidence from zircon U-Pb-O and whole-rock geochemical and Sr-Nd-Fe isotopic data of adakitic plutons in the Himalaya-Tibetan Plateau 期刊论文
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2020, 132 (1-2) : 409-426
作者:  Yin, Canben;  Ou, Jie;  Long, Xiaoping;  Huang, Fang;  Zhang, Jian;  Li, Shun;  Wang, Luojuan;  Xia, Xiaoping;  He, Xiaolan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02