GSTDTAP

浏览/检索结果: 共25条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Underestimation of brown carbon absorption based on the methanol extraction method and its impacts on source analysis 期刊论文
Atmospheric Chemistry and Physics, 2022
作者:  Zhenqi Xu, Wei Feng, Yicheng Wang, Haoran Ye, Yuhang Wang, Hong Liao, and Mingjie Xie
收藏  |  浏览/下载:21/0  |  提交时间:2022/07/08
Resource potential of the Jurassic gas system, northern margin of the Qaidam Basin, northwestern China 期刊论文
AAPG Bulletin, 2021
作者:  Zeqing Guo;  Zengye Xie;  Jian Li;  Jixian Tian;  Xu Zeng;  Wei Ma
收藏  |  浏览/下载:8/0  |  提交时间:2021/05/21
Improving ECMWF short-term intensive rainfall forecasts using generative adversarial nets and deep belief networks 期刊论文
Atmospheric Research, 2020
作者:  Huosheng Xie, Lidong Wu, Wei Xie, Qing Lin, ... Yongjing Lin
收藏  |  浏览/下载:5/0  |  提交时间:2020/09/30
Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling 期刊论文
NATURE GEOSCIENCE, 2020, 13 (6) : 441-+
作者:  Su, Jianzhong;  Cai, Wei-Jun;  Brodeur, Jean;  Chen, Baoshan;  Hussain, Najid;  Yao, Yichen;  Ni, Chaoying;  Testa, Jeremy M.;  Li, Ming;  Xie, Xiaohui;  Ni, Wenfei;  Scaboo, K. Michael;  Xu, Yuan-yuan;  Cornwell, Jeffrey;  Gurbisz, Cassie;  Owens, Michael S.;  Waldbusser, George G.;  Dai, Minhan;  Kemp, W. Michael
收藏  |  浏览/下载:7/0  |  提交时间:2020/06/09
Elevated dust layers inhibit dissipation of heavy anthropogenic surface air pollution 期刊论文
Atmospheric Chemistry and Physics, 2020
作者:  Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/01
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (5) : 2877-2890
作者:  Lei, Lu;  Xie, Conghui;  Wang, Dawei;  He, Yao;  Wang, Qingqing;  Zhou, Wei;  Hu, Wei;  Fu, Pingqing;  Chen, Yong;  Pan, Xiaole;  Wang, Zifa;  Worsnop, Douglas;  Sun, Yele
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (9) : 4823-4830
作者:  Zhang, Yao;  Qin, Wei;  Hou, Lei;  Zakem, Emily J.;  Wan, Xianhui;  Zhao, Zihao;  Liu, Li;  Hunt, Kristopher A.;  Jiao, Nianzhi;  Kao, Shuh-Ji;  Tang, Kai;  Xie, Xiabing;  Shen, Jiaming;  Li, Yufang;  Chen, Mingming;  Dai, Xiaofeng;  Liu, Chang;  Deng, Wenchao;  Dai, Minhan;  Ingalls, Anitra E.;  Stahl, David A.;  Herndl, Gerhard J.
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
nitrification  dark ocean  nitrogen flux  carbon fixation  homeostasis  
Mutational signature in colorectal cancer caused by genotoxic pks(+)E. coli 期刊论文
NATURE, 2020, 580 (7802) : 269-+
作者:  Lin, Xi;  Li, Mingyue;  Wang, Niandong;  Wu, Yiran;  Luo, Zhipu;  Guo, Shimeng;  Han, Gye-Won;  Li, Shaobai;  Yue, Yang;  Wei, Xiaohu;  Xie, Xin;  Chen, Yong;  Zhao, Suwen;  Wu, Jian;  Lei, Ming;  Xu, Fei
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Various species of the intestinal microbiota have been associated with the development of colorectal cancer(1,2), but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin(3). This compound is believed to alkylate DNA on adenine residues(4,5) and induces double-strand breaks in cultured cells(3). Here we expose human intestinal organoids to genotoxic pks(+)E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.


Organoids derived from human intestinal cells that are co-cultured with bacteria carrying the genotoxic pks(+) island develop a distinct mutational signature associated with colorectal cancer.


  
Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide 期刊论文
NATURE, 2020, 578 (7796) : 545-+
作者:  Kum, Hyun S.;  Lee, Hyungwoo;  Kim, Sungkyu;  Lindemann, Shane;  Kong, Wei;  Qiao, Kuan;  Chen, Peng;  Irwin, Julian;  Lee, June Hyuk;  Xie, Saien;  Subramanian, Shruti;  Shim, Jaewoo;  Bae, Sang-Hoon;  Choi, Chanyeol;  Ranno, Luigi;  Seo, Seungju;  Lee, Sangho;  Bauer, Jackson;  Li, Huashan;  Lee, Kyusang;  Robinson, Joshua A.;  Ross, Caroline A.;  Schlom, Darrell G.;  Rzchowski, Mark S.;  Eom, Chang-Beom;  Kim, Jeehwan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels(1,2). Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology(2). In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes(1). Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order(3-6), electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest(3-15), no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials(4,16).


Optical chiral induction and spontaneous gyrotropic electronic order are realized in the transition-metal chalcogenide 1T-TiSe2 by using illumination with mid-infrared circularly polarized light and simultaneous cooling below the critical temperature.


  
Nagaoka ferromagnetism observed in a quantum dot plaquette 期刊论文
NATURE, 2020, 579 (7800) : 528-533
作者:  Yu, Yong;  Ma, Fei;  Luo, Xi-Yu;  Jing, Bo;  Sun, Peng-Fei;  Fang, Ren-Zhou;  Yang, Chao-Wei;  Liu, Hui;  Zheng, Ming-Yang;  Xie, Xiu-Ping;  Zhang, Wei-Jun;  You, Li-Xing;  Wang, Zhen;  Chen, Teng-Yun;  Zhang, Qiang;  Bao, Xiao-Hui;  Pan, Jian-Wei
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

A quantum dot device designed to host four electrons is used to demonstrate Nagaoka ferromagnetism-a model of itinerant magnetism that has so far been limited to theoretical investigation.


Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers(1). An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades(2,3). Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots(4) to demonstrate Nagaoka ferromagnetism(5). This form of itinerant magnetism has been rigorously studied theoretically(6-9) but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.