GSTDTAP

浏览/检索结果: 共26条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter 期刊论文
Geophysical Research Letters, 2021
作者:  Wen Li;  Q. Ma;  X.-C. Shen;  X.-J. Zhang;  B. H. Mauk;  G. Clark;  F. Allegrini;  W. S. Kurth;  G. B. Hospodarsky;  V. Hue;  G. R. Gladstone;  T. K. Greathouse;  S. J. Bolton
收藏  |  浏览/下载:10/0  |  提交时间:2021/10/07
Peta–electron volt gamma-ray emission from the Crab Nebula 期刊论文
Science, 2021
作者:  The LHAASO Collaboration*†;  Zhen Cao;  F. Aharonian;  Q. An;  Axikegu;  L. X. Bai;  Y. X. Bai;  Y. W. Bao;  D. Bastieri;  X. J. Bi;  Y. J. Bi;  H. Cai;  J. T. Cai;  Zhe Cao;  J. Chang;  J. F. Chang;  B. M. Chen;  E. S. Chen;  J. Chen;  Liang Chen;  Liang Chen;  Long Chen;  M. J. Chen;  M. L. Chen;  Q. H. Chen;  S. H. Chen;  S. Z. Chen;  T. L. Chen;  X. L. Chen;  Y. Chen;  N. Cheng;  Y. D. Cheng;  S. W. Cui;  X. H. Cui;  Y. D. Cui;  B. D’Ettorre Piazzoli;  B. Z. Dai;  H. L. Dai;  Z. G. Dai;  Danzengluobu;  D. della Volpe;  X. J. Dong;  K. K. Duan;  J. H. Fan;  Y. Z. Fan;  Z. X. Fan;  J. Fang;  K. Fang;  C. F. Feng;  L. Feng;  S. H. Feng;  Y. L. Feng;  B. Gao;  C. D. Gao;  L. Q. Gao;  Q. Gao;  W. Gao;  M. M. Ge;  L. S. Geng;  G. H. Gong;  Q. B. Gou;  M. H. Gu;  F. L. Guo;  J. G. Guo;  X. L. Guo;  Y. Q. Guo;  Y. Y. Guo;  Y. A. Han;  H. H. He;  H. N. He;  J. C. He;  S. L. He;  X. B. He;  Y. He;  M. Heller;  Y. K. Hor;  C. Hou;  X. Hou;  H. B. Hu;  S. Hu;  S. C. Hu;  X. J. Hu;  D. H. Huang;  Q. L. Huang;  W. H. Huang;  X. T. Huang;  X. Y. Huang;  Z. C. Huang;  F. Ji;  X. L. Ji;  H. Y. Jia;  K. Jiang;  Z. J. Jiang;  C. Jin;  T. Ke;  D. Kuleshov;  K. Levochkin;  B. B. Li;  Cheng Li;  Cong Li;  F. Li;  H. B. Li;  H. C. Li;  H. Y. Li;  Jian Li;  Jie Li;  K. Li;  W. L. Li;  X. R. Li;  Xin Li;  Xin Li;  Y. Li;  Y. Z. Li;  Zhe Li;  Zhuo Li;  E. W. Liang;  Y. F. Liang;  S. J. Lin;  B. Liu;  C. Liu;  D. Liu;  H. Liu;  H. D. Liu;  J. Liu;  J. L. Liu;  J. S. Liu;  J. Y. Liu;  M. Y. Liu;  R. Y. Liu;  S. M. Liu;  W. Liu;  Y. Liu;  Y. N. Liu;  Z. X. Liu;  W. J. Long;  R. Lu;  H. K. Lv;  B. Q. Ma;  L. L. Ma;  X. H. Ma;  J. R. Mao;  A. Masood;  Z. Min;  W. Mitthumsiri;  T. Montaruli;  Y. C. Nan;  B. Y. Pang;  P. Pattarakijwanich;  Z. Y. Pei;  M. Y. Qi;  Y. Q. Qi;  B. Q. Qiao;  J. J. Qin;  D. Ruffolo;  V. Rulev;  A. Saiz;  L. Shao;  O. Shchegolev;  X. D. Sheng;  J. Y. Shi;  H. C. Song;  Yu. V. Stenkin;  V. Stepanov;  Y. Su;  Q. N. Sun;  X. N. Sun;  Z. B. Sun;  P. H. T. Tam;  Z. B. Tang;  W. W. Tian;  B. D. Wang;  C. Wang;  H. Wang;  H. G. Wang;  J. C. Wang;  J. S. Wang;  L. P. Wang;  L. Y. Wang;  R. N. Wang;  Wei Wang;  Wei Wang;  X. G. Wang;  X. J. Wang;  X. Y. Wang;  Y. Wang;  Y. D. Wang;  Y. J. Wang;  Y. P. Wang;  Z. H. Wang;  Z. X. Wang;  Zhen Wang;  Zheng Wang;  D. M. Wei;  J. J. Wei;  Y. J. Wei;  T. Wen;  C. Y. Wu;  H. R. Wu;  S. Wu;  W. X. Wu;  X. F. Wu;  S. Q. Xi;  J. Xia;  J. J. Xia;  G. M. Xiang;  D. X. Xiao;  G. Xiao;  H. B. Xiao;  G. G. Xin;  Y. L. Xin;  Y. Xing;  D. L. Xu;  R. X. Xu;  L. Xue;  D. H. Yan;  J. Z. Yan;  C. W. Yang;  F. F. Yang;  J. Y. Yang;  L. L. Yang;  M. J. Yang;  R. Z. Yang;  S. B. Yang;  Y. H. Yao;  Z. G. Yao;  Y. M. Ye;  L. Q. Yin;  N. Yin;  X. H. You;  Z. Y. You;  Y. H. Yu;  Q. Yuan;  H. D. Zeng;  T. X. Zeng;  W. Zeng;  Z. K. Zeng;  M. Zha;  X. X. Zhai;  B. B. Zhang;  H. M. Zhang;  H. Y. Zhang;  J. L. Zhang;  J. W. Zhang;  L. X. Zhang;  Li Zhang;  Lu Zhang;  P. F. Zhang;  P. P. Zhang;  R. Zhang;  S. R. Zhang;  S. S. Zhang;  X. Zhang;  X. P. Zhang;  Y. F. Zhang;  Y. L. Zhang;  Yi Zhang;  Yong Zhang;  B. Zhao;  J. Zhao;  L. Zhao;  L. Z. Zhao;  S. P. Zhao;  F. Zheng;  Y. Zheng;  B. Zhou;  H. Zhou;  J. N. Zhou;  P. Zhou;  R. Zhou;  X. X. Zhou;  C. G. Zhu;  F. R. Zhu;  H. Zhu;  K. J. Zhu;  X. Zuo
收藏  |  浏览/下载:14/0  |  提交时间:2021/07/27
Ice-covered lakes of Tibetan Plateau as solar heat collectors 期刊论文
Geophysical Research Letters, 2021
作者:  G. B. Kirillin;  T. Shatwell;  L. Wen
收藏  |  浏览/下载:9/0  |  提交时间:2021/06/24
Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons 期刊论文
Science, 2021
作者:  Dylan A. Reid;  Patrick J. Reed;  Johannes C. M. Schlachetzki;  Ioana I. Nitulescu;  Grace Chou;  Enoch C. Tsui;  Jeffrey R. Jones;  Sahaana Chandran;  Ake T. Lu;  Claire A. McClain;  Jean H. Ooi;  Tzu-Wen Wang;  Addison J. Lana;  Sara B. Linker;  Anthony S. Ricciardulli;  Shong Lau;  Simon T. Schafer;  Steve Horvath;  Jesse R. Dixon;  Nasun Hah;  Christopher K. Glass;  Fred H. Gage
收藏  |  浏览/下载:15/0  |  提交时间:2021/04/06
Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice 期刊论文
Science, 2021
作者:  Umang Jain;  Aaron M. Ver Heul;  Shanshan Xiong;  Martin H. Gregory;  Elora G. Demers;  Justin T. Kern;  Chin-Wen Lai;  Brian D. Muegge;  Derek A. G. Barisas;  J. Steven Leal-Ekman;  Parakkal Deepak;  Matthew A. Ciorba;  Ta-Chiang Liu;  Deborah A. Hogan;  Philip Debbas;  Jonathan Braun;  Dermot P. B. McGovern;  David M. Underhill;  Thaddeus S. Stappenbeck
收藏  |  浏览/下载:15/0  |  提交时间:2021/03/17
Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams 期刊论文
Global Change Biology, 2020
作者:  James J. Elser;  Chenxi Wu;  Angé;  lica L. Gonzá;  lez;  Daniel H. Shain;  Heidi J. Smith;  Ruben Sommaruga;  Craig E. Williamson;  Janice Brahney;  Scott Hotaling;  Joseph Vanderwall;  Jinlei Yu;  Vladimir Aizen;  Elena Aizen;  Tom J. Battin;  Roberto Camassa;  Xiu Feng;  Hongchen Jiang;  Lixin Lu;  John J. Qu;  Ze Ren;  Jun Wen;  Lijuan Wen;  H. Arthur Woods;  Xiong Xiong;  Jun Xu;  Gongliang Yu;  Joel T. Harper;  Jasmine E. Saros
收藏  |  浏览/下载:8/0  |  提交时间:2020/10/26
Cell type–specific genetic regulation of gene expression across human tissues 期刊论文
Science, 2020
作者:  Sarah Kim-Hellmuth;  François Aguet;  Meritxell Oliva;  Manuel Muñoz-Aguirre;  Silva Kasela;  Valentin Wucher;  Stephane E. Castel;  Andrew R. Hamel;  Ana Viñuela;  Amy L. Roberts;  Serghei Mangul;  Xiaoquan Wen;  Gao Wang;  Alvaro N. Barbeira;  Diego Garrido-Martín;  Brian B. Nadel;  Yuxin Zou;  Rodrigo Bonazzola;  Jie Quan;  Andrew Brown;  Angel Martinez-Perez;  José Manuel Soria;  GTEx Consortium§;  Gad Getz;  Emmanouil T. Dermitzakis;  Kerrin S. Small;  Matthew Stephens;  Hualin S. Xi;  Hae Kyung Im;  Roderic Guigó;  Ayellet V. Segrè;  Barbara E. Stranger;  Kristin G. Ardlie;  Tuuli Lappalainen
收藏  |  浏览/下载:12/0  |  提交时间:2020/09/14
De novo protein design enables the precise induction of RSV-neutralizing antibodies 期刊论文
Science, 2020
作者:  Fabian Sesterhenn;  Che Yang;  Jaume Bonet;  Johannes T. Cramer;  Xiaolin Wen;  Yimeng Wang;  Chi-I Chiang;  Luciano A. Abriata;  Iga Kucharska;  Giacomo Castoro;  Sabrina S. Vollers;  Marie Galloux;  Elie Dheilly;  Stéphane Rosset;  Patricia Corthésy;  Sandrine Georgeon;  Mélanie Villard;  Charles-Adrien Richard;  Delphyne Descamps;  Teresa Delgado;  Elisa Oricchio;  Marie-Anne Rameix-Welti;  Vicente Más;  Sean Ervin;  Jean-François Eléouët;  Sabine Riffault;  John T. Bates;  Jean-Philippe Julien;  Yuxing Li;  Theodore Jardetzky;  Thomas Krey;  Bruno E. Correia
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/20
Observation of Bose-Einstein condensates in an Earth-orbiting research lab 期刊论文
NATURE, 2020, 582 (7811) : 103-+
作者:  Yamamoto, Keisuke;  Venida, Anthony;  Yano, Julian;  Biancur, Douglas E.;  Kakiuchi, Miwako;  Gupta, Suprit;  Sohn, Albert S. W.;  Mukhopadhyay, Subhadip;  Lin, Elaine Y.;  Parker, Seth J.;  Banh, Robert S.;  Paulo, Joao A.;  Wen, Kwun Wah;  Debnath, Jayanta;  Kim, Grace E.;  Mancias, Joseph D.;  Fearon, Douglas T.;  Perera, Rushika M.;  Kimmelman, Alec C.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Quantum mechanics governs the microscopic world, where low mass and momentum reveal a natural wave-particle duality. Magnifying quantum behaviour to macroscopic scales is a major strength of the technique of cooling and trapping atomic gases, in which low momentum is engineered through extremely low temperatures. Advances in this field have achieved such precise control over atomic systems that gravity, often negligible when considering individual atoms, has emerged as a substantial obstacle. In particular, although weaker trapping fields would allow access to lower temperatures(1,2), gravity empties atom traps that are too weak. Additionally, inertial sensors based on cold atoms could reach better sensitivities if the free-fall time of the atoms after release from the trap could be made longer(3). Planetary orbit, specifically the condition of perpetual free-fall, offers to lift cold-atom studies beyond such terrestrial limitations. Here we report production of rubidium Bose-Einstein condensates (BECs) in an Earth-orbiting research laboratory, the Cold Atom Lab. We observe subnanokelvin BECs in weak trapping potentials with free-expansion times extending beyond one second, providing an initial demonstration of the advantages offered by a microgravity environment for cold-atom experiments and verifying the successful operation of this facility. With routine BEC production, continuing operations will support long-term investigations of trap topologies unique to microgravity(4,5), atom-laser sources(6), few-body physics(7,8)and pathfinding techniques for atom-wave interferometry(9-12).


  
Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform 期刊论文
NATURE, 2020
作者:  Touat, Mehdi;  Li, Yvonne Y.;  Boynton, Adam N.;  Spurr, Liam F.;  Iorgulescu, J. Bryan;  Bohrson, Craig L.;  Cortes-Ciriano, Isidro;  Birzu, Cristina;  Geduldig, Jack E.;  Pelton, Kristine;  Lim-Fat, Mary Jane;  Pal, Sangita;  Ferrer-Luna, Ruben;  Ramkissoon, Shakti H.;  Dubois, Frank;  Bellamy, Charlotte;  Currimjee, Naomi;  Bonardi, Juliana;  Qian Kenin;  Ho, Patricia;  Malinowski, Seth;  Taquet, Leon;  Jones, Robert E.;  Shetty, Aniket;  Chow, Kin-Hoe;  Sharaf, Radwa;  Pavlick, Dean;  Albacker, Lee A.;  Younan, Nadia;  Baldini, Capucine;  Verreault, Maite;  Giry, Marine;  Guillerm, Erell;  Ammari, Samy;  Beuvon, Frederic;  Mokhtari, Karima;  Alentorn, Agusti;  Dehais, Caroline;  Houillier, Caroline;  Laigle-Donadey, Florence;  Psimaras, Dimitri;  Lee, Eudocia Q.;  Nayak, Lakshmi;  McFaline-Figueroa, J. Ricardo;  Carpentier, Alexandre;  Cornu, Philippe;  Capelle, Laurent;  Mathon, Bertrand;  Barnholtz-Sloan, Jill S.;  Chakravarti, Arnab;  Bi, Wenya Linda;  Chiocca, E. Antonio;  Fehnel, Katie Pricola;  Alexandrescu, Sanda;  Chi, Susan N.;  Haas-Kogan, Daphne;  Batchelor, Tracy T.;  Frampton, Garrett M.;  Alexander, Brian M.;  Huang, Raymond Y.;  Ligon, Azra H.;  Coulet, Florence;  Delattre, Jean-Yves;  Hoang-Xuan, Khe;  Meredith, David M.;  Santagata, Sandro;  Duval, Alex;  Sanson, Marc;  Cherniack, Andrew D.;  Wen, Patrick Y.;  Reardon, David A.;  Marabelle, Aurelien;  Park, Peter J.;  Idbaih, Ahmed;  Beroukhim, Rameen;  Bandopadhayay, Pratiti;  Bielle, Franck;  Ligon, Keith L.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate inEscherichia coliowing to the size and occasional instability of the genome(1-3). Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of theCoronaviridae,FlaviviridaeandPneumoviridaefamilies. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step inSaccharomyces cerevisiaeusing transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(4), which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


A yeast-based synthetic genomics platform is used to reconstruct and characterize large RNA viruses from synthetic DNA fragments  this technique will facilitate the rapid analysis of RNA viruses, such as SARS-CoV-2, during an outbreak.