GSTDTAP

浏览/检索结果: 共64条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
A modelling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017 期刊论文
Atmospheric Chemistry and Physics, 2022
作者:  Chung-Chieh Wang, Ting-Yu Yeh, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
收藏  |  浏览/下载:15/0  |  提交时间:2022/06/24
Atmospheric ammonia point source detection technique at regional scale using high resolution satellite imagery and deep learning 期刊论文
Atmospheric Research, 2021
作者:  Ming Lei, Tianhai Cheng, Xiaoyang Li, Shuaiyi Shi, ... Yu Wu
收藏  |  浏览/下载:10/0  |  提交时间:2021/04/06
Identifying the dominant driving factors of heat waves in the North China Plain 期刊论文
Atmospheric Research, 2021
作者:  Xiaojun Wu, Lunche Wang, Rui Yao, Ming Luo, Xin Li
收藏  |  浏览/下载:8/0  |  提交时间:2021/01/15
Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China 期刊论文
Atmospheric Research, 2020
作者:  Lan Yu, Ming Zhang, Lunche Wang, Yunbo Lu, Junli Li
收藏  |  浏览/下载:6/0  |  提交时间:2020/08/09
Ozone affected by a succession of four landfall typhoons in the Yangtze River Delta, China: major processes and health impacts 期刊论文
Atmospheric Chemistry and Physics, 2020
作者:  Chenchao Zhan, Min Xie, Chongwu Huang, Tijian Wang, Jane Liu, Meng Xu, Chaoqun Ma, Jianwei Yu, Yumeng Jiao, Mengmeng Li, Shu Li, Bingliang Zhuang, Ming Zhao, and Dongyang Nie
收藏  |  浏览/下载:8/0  |  提交时间:2020/08/09
Nation wide increase of polycyclic aromatic hydrocarbons in ultrafine particles during winter over China 期刊论文
Atmospheric Chemistry and Physics, 2020
作者:  Qingqing Yu, Xiang Ding, Quanfu He, Weiqiang Yang, Ming Zhu, Sheng Li, Runqi Zhang, Ruqin Shen, Yanli Zhang, Xinhui Bi, Yuesi Wang, Ping’an Peng, and Xinming Wang
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/29
Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling 期刊论文
NATURE GEOSCIENCE, 2020, 13 (6) : 441-+
作者:  Su, Jianzhong;  Cai, Wei-Jun;  Brodeur, Jean;  Chen, Baoshan;  Hussain, Najid;  Yao, Yichen;  Ni, Chaoying;  Testa, Jeremy M.;  Li, Ming;  Xie, Xiaohui;  Ni, Wenfei;  Scaboo, K. Michael;  Xu, Yuan-yuan;  Cornwell, Jeffrey;  Gurbisz, Cassie;  Owens, Michael S.;  Waldbusser, George G.;  Dai, Minhan;  Kemp, W. Michael
收藏  |  浏览/下载:7/0  |  提交时间:2020/06/09
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (10) : 5923-5943
作者:  Zhang, Meixin;  Zhao, Chun;  Cong, Zhiyuan;  Du, Qiuyan;  Xu, Mingyue;  Chen, Yu;  Chen, Ming;  Li, Rui;  Fu, Yunfei;  Zhong, Lei;  Kang, Shichang;  Zhao, Delong;  Yang, Yan
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.