GSTDTAP

浏览/检索结果: 共51条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (13) : 8181-8200
作者:  Yang, Yuan;  Wang, Yonghong;  Zhou, Putian;  Yao, Dan;  Ji, Dongsheng;  Sun, Jie;  Wang, Yinghong;  Zhao, Shuman;  Huang, Wei;  Yang, Shuanghong;  Chen, Dean;  Gao, Wenkang;  Liu, Zirui;  Hu, Bo;  Zhang, Renjian;  Zeng, Limin;  Ge, Maofa;  Petaja, Tuukka;  Kerminen, Veli-Matti;  Kulmala, Markku;  Wang, Yuesi
收藏  |  浏览/下载:17/0  |  提交时间:2020/08/18
Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (12) : 7595-7615
作者:  Guo, Junchen;  Zhou, Shengzhen;  Cai, Mingfu;  Zhao, Jun;  Song, Wei;  Zhao, Weixiong;  Hu, Weiwei;  Sun, Yele;  He, Yao;  Yang, Chengqiang;  Xu, Xuezhe;  Zhang, Zhisheng;  Cheng, Peng;  Fan, Qi;  Hang, Jian;  Fan, Shaojia;  Wang, Xinming;  Wang, Xuemei
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/06
Why do models perform differently on particulate matter over East Asia? A multi-model intercomparison study for MICS-Asia III 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (12) : 7393-7410
作者:  Tan, Jiani;  Fu, Joshua S.;  Carmichael, Gregory R.;  Itahashi, Syuichi;  Tao, Zhining;  Huang, Kan;  Dong, Xinyi;  Yamaji, Kazuyo;  Nagashima, Tatsuya;  Wang, Xuemei;  Liu, Yiming;  Lee, Hyo-Jung;  Lin, Chuan-Yao;  Ge, Baozhu;  Kajino, Mizuo;  Zhu, Jia;  Zhang, Meigen;  Liao, Hong;  Wang, Zifa
收藏  |  浏览/下载:11/0  |  提交时间:2020/08/18
Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (11) : 6903-6919
作者:  Zhang, Wei;  Yao, Zhisheng;  Zheng, Xunhua;  Liu, Chunyan;  Wang, Rui;  Wang, Kai;  Li, Siqi;  Han, Shenghui;  Zuo, Qiang;  Shi, Jianchu
收藏  |  浏览/下载:12/0  |  提交时间:2020/06/16
Global impact of atmospheric arsenic on health risk: 2005 to 2015 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (25) : 13975-13982
作者:  Zhang, Lei;  Gao, Yang;  Wu, Shiliang;  Zhang, Shaoqing;  Smith, Kirk R.;  Yao, Xiaohong;  Gao, Huiwang
收藏  |  浏览/下载:15/0  |  提交时间:2020/06/16
atmospheric arsenic  GEOS-Chem  cancer risk  noncarcinogenic effect  
Large and projected strengthening moisture limitation on end-of-season photosynthesis 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) : 9216-9222
作者:  Zhang, Yao;  Parazoo, Nicholas C.;  Williams, A. Park;  Zhou, Sha;  Gentine, Pierre
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
end of photosynthesis  solar induced fluorescence (SIF)  gross primary production (GPP)  climate change  water stress  
Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1 期刊论文
NATURE, 2020, 583 (7814) : 145-+
作者:  Jin, Zhenming;  Du, Xiaoyu;  Xu, Yechun;  Deng, Yongqiang;  Liu, Meiqin;  Zhao, Yao;  Zhang, Bing;  Li, Xiaofeng;  Zhang, Leike;  Peng, Chao;  Duan, Yinkai;  Yu, Jing;  Wang, Lin;  Yang, Kailin;  Liu, Fengjiang;  Jiang, Rendi;  Yang, Xinglou;  You, Tian;  Liu, Xiaoce
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Voltage-gated potassium (K-v) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges(1-3), the general determinants of channel gating polarity remain poorly understood(4). Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped K-v channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated K-v channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5-7 angstrom can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels(5), and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.


The cryo-electron microscopy structure of the hyperpolarization-activated K+ channel KAT1 points to a direct-coupling mechanism between S4 movement and the reorientation of the C-linker.


  
A Unified Nonlinear Multiscale Interaction Model of Pacific-North American Teleconnection Patterns 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (4) : 1387-1414
作者:  Luo, Dehai;  Ge, Yao;  Zhang, Wenqi;  Dai, Aiguo
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Eddies  Nonlinear dynamics  Pacific-North American pattern  oscillation  Potential vorticity  North Atlantic Oscillation  
A lower X-gate in TASK channels traps inhibitors within the vestibule 期刊论文
NATURE, 2020
作者:  Chen, Tao;  Nomura, Kinya;  Wang, Xiaolin;  Sohrabi, Reza;  Xu, Jin;  Yao, Lingya;  Paasch, Bradley C.;  Ma, Li;  Kremer, James;  Cheng, Yuti;  Zhang, Li;  Wang, Nian;  Wang, Ertao;  Xin, Xiu-Fang;  He, Sheng Yang
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K-2P) channel family-are found in neurons(1), cardiomyocytes(2-4) and vascular smooth muscle cells(5), where they are involved in the regulation of heart rate(6), pulmonary artery tone(5,7), sleep/wake cycles(8) and responses to volatile anaesthetics(8-11). K-2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli(12-15). Unlike other K-2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation(16). In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below  however, the K-2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an '  X-gate'  -created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues ((VLRFMT248)-V-243) that are essential for responses to volatile anaesthetics(10), neurotransmitters(13) and G-protein-coupled receptors(13). Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.


The X-ray crystal structure of the potassium channel TASK-1 reveals the presence of an X-gate, which traps small-molecule inhibitors in the intramembrane vestibule and explains their low washout rates from the channel.


  
Notch signalling drives synovial fibroblast identity and arthritis pathology 期刊论文
NATURE, 2020, 582 (7811) : 259-+
作者:  Han, Xiaoping;  Zhou, Ziming;  Fei, Lijiang;  Sun, Huiyu;  Wang, Renying;  Chen, Yao;  Chen, Haide;  Wang, Jingjing;  Tang, Huanna;  Ge, Wenhao;  Zhou, Yincong;  Ye, Fang;  Jiang, Mengmeng;  Wu, Junqing;  Xiao, Yanyu;  Jia, Xiaoning;  Zhang, Tingyue;  Ma, Xiaojie;  Zhang, Qi;  Bai, Xueli;  Lai, Shujing;  Yu, Chengxuan;  Zhu, Lijun;  Lin, Rui;  Gao, Yuchi;  Wang, Min;  Wu, Yiqing;  Zhang, Jianming;  Zhan, Renya;  Zhu, Saiyong;  Hu, Hailan;  Wang, Changchun;  Chen, Ming;  Huang, He;  Liang, Tingbo;  Chen, Jianghua;  Wang, Weilin;  Zhang, Dan;  Guo, Guoji
收藏  |  浏览/下载:42/0  |  提交时间:2020/07/03

NOTCH3 signalling is shown to be the underlying driver of the differentiation and expansion of a subset of synovial fibroblasts implicated in the pathogenesis of rheumatoid arthritis.


The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint(1,2). It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity(3-5)  however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.