GSTDTAP

浏览/检索结果: 共11条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Structural basis for catalysis and substrate specificity of human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 333-+
作者:  Jiao, Huipeng;  Wachsmuth, Laurens;  Kumari, Snehlata;  Schwarzer, Robin;  Lin, Juan;  Eren, Remzi Onur;  Fisher, Amanda;  Lane, Rebecca;  Young, George R.;  Kassiotis, George;  Kaiser, William J.;  Pasparakis, Manolis
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The structure of human ACAT1, which catalyses the transfer of an acyl group from acyl-coenzyme A to cholesterol to form cholesteryl ester, is resolved by cryo-electron microscopy.


As members of the membrane-bound O-acyltransferase (MBOAT) enzyme family, acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyse the transfer of an acyl group from acyl-coenzyme A to cholesterol to generate cholesteryl ester, the primary form in which cholesterol is stored in cells and transported in plasma(1). ACATs have gained attention as potential drug targets for the treatment of diseases such as atherosclerosis, Alzheimer'  s disease and cancer(2-7). Here we present the cryo-electron microscopy structure of human ACAT1 as a dimer of dimers. Each protomer consists of nine transmembrane segments, which enclose a cytosolic tunnel and a transmembrane tunnel that converge at the predicted catalytic site. Evidence from structure-guided mutational analyses suggests that acyl-coenzyme A enters the active site through the cytosolic tunnel, whereas cholesterol may enter from the side through the transmembrane tunnel. This structural and biochemical characterization helps to rationalize the preference of ACAT1 for unsaturated acyl chains, and provides insight into the catalytic mechanism of enzymes within the MBOAT family(8).


  
Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme 期刊论文
NATURE, 2020, 581 (7808) : 323-+
作者:  Nikoo, Mohammad Samizadeh;  Jafari, Armin;  Perera, Nirmana;  Zhu, Minghua;  Santoruvo, Giovanni;  Matioli, Elison
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Triacylglycerols store metabolic energy in organisms and have industrial uses as foods and fuels. Excessive accumulation of triacylglycerols in humans causes obesity and is associated with metabolic diseases(1). Triacylglycerol synthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes(2-4), the structures and catalytic mechanisms of which remain unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O-acyltransferase (MBOAT) family, by cryo-electron microscopy at approximately 3.0 angstrom resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at approximately 3.2 angstrom shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction centre is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density-possibly representing an acyl-acceptor molecule-is located within the reaction centre, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, provide the basis for a model of the catalysis of triacylglycerol synthesis by DGAT.


Cryo-electron microscopy structures and functional and mutagenesis studies provide insights into the catalysis of triacylglycerol synthesis by human acyl-CoA diacylglycerol acyltransferase at its intramembrane active site.


  
Copper-mediated synthesis of drug-like bicyclopentanes 期刊论文
NATURE, 2020, 580 (7802) : 220-+
作者:  Canavelli, Pierre;  Islam, Saidul;  Powner, Matthew W.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences(1). Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements(2). These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles(3-13). The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, alpha-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


A one-step, three-component radical coupling of [1.1.1]propellane by a photoredox reaction mediated by a copper catalyst produces drug-like bicyclopentanes.


  
HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation 期刊论文
NATURE, 2020, 579 (7800) : 598-+
作者:  Yao, Peng;  Wu, Huaqiang;  Gao, Bin;  Tang, Jianshi;  Zhang, Qingtian;  Zhang, Wenqiang;  Yang, J. Joshua;  Qian, He
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Assembly of a catalytic centre formed by HPF1 bound to PARP1 or PARP2 is essential for protein ADP-ribosylation after DNA damage in human cells.


The anti-cancer drug target poly(ADP-ribose) polymerase 1 (PARP1) and its close homologue, PARP2, are early responders to DNA damage in human cells(1,2). After binding to genomic lesions, these enzymes use NAD(+) to modify numerous proteins with mono- and poly(ADP-ribose) signals that are important for the subsequent decompaction of chromatin and the recruitment of repair factors(3,4). These post-translational modifications are predominantly serine-linked and require the accessory factor HPF1, which is specific for the DNA damage response and switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine residues(5-10). Here we report a co-structure of HPF1 bound to the catalytic domain of PARP2 that, in combination with NMR and biochemical data, reveals a composite active site formed by residues from HPF1 and PARP1 or PARP2 . The assembly of this catalytic centre is essential for the addition of ADP-ribose moieties after DNA damage in human cells. In response to DNA damage and occupancy of the NAD(+)-binding site, the interaction of HPF1 with PARP1 or PARP2 is enhanced by allosteric networks that operate within the PARP proteins, providing an additional level of regulation in the induction of the DNA damage response. As HPF1 forms a joint active site with PARP1 or PARP2, our data implicate HPF1 as an important determinant of the response to clinical PARP inhibitors.


  
NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly 期刊论文
NATURE, 2020, 578 (7795) : 461-+
作者:  Fruchart, Michel;  Zhou, Yujie;  Vitelli, Vincenzo
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Eukaryotic cell biology depends on cullin-RING E3 ligase (CRL)-catalysed protein ubiquitylation(1), which is tightly controlled by the modification of cullin with the ubiquitin-like protein NEDD8(2-6). However, how CRLs catalyse ubiquitylation, and the basis of NEDD8 activation, remain unknown. Here we report the cryo-electron microscopy structure of a chemically trapped complex that represents the ubiquitylation intermediate, in which the neddylated CRL1(beta-TRCP) promotes the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D to its recruited substrate, phosphorylated I kappa B alpha. NEDD8 acts as a nexus that binds disparate cullin elements and the RING-activated ubiquitin-linked UBE2D. Local structural remodelling of NEDD8 and large-scale movements of CRL domains converge to juxtapose the substrate and the ubiquitylation active site. These findings explain how a distinctive ubiquitin-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust, to enable rapid ubiquitylation of the substrate, and fragile, to enable the subsequent functions of cullin-RING proteins.


A cryo-electron microscopy structure provides insights into the activation of cullin-RING E3 ligases by NEDD8 and the consequent catalysis of ubiquitylation reactions.


  
Conversion of non-van der Waals solids to 2D transition-metal chalcogenides 期刊论文
NATURE, 2020, 577 (7791) : 492-+
作者:  Du, Zhiguo;  Yang, Shubin;  Li, Songmei;  Lou, Jun;  Zhang, Shuqing;  Wang, Shuai;  Li, Bin;  Gong, Yongji;  Song, Li;  Zou, Xiaolong;  Ajayan, Pulickel M.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

A synthetic approach is described, for efficiently converting non-van der Waals solids into two-dimensional van der Waals transition-metal chalcogenide layers with specific phases, enabling the high-throughput production of monolayers.


Although two-dimensional (2D) atomic layers, such as transition-metal chalcogenides, have been widely synthesized using techniques such as exfoliation(1-3) and vapour-phase growth(4,5), it is still challenging to obtain phase-controlled 2D structures(6-8). Here we demonstrate an effective synthesis strategy via the progressive transformation of non-van der Waals (non-vdW) solids to 2D vdW transition-metal chalcogenide layers with identified 2H (trigonal prismatic)/1T (octahedral) phases. The transformation, achieved by exposing non-vdW solids to chalcogen vapours, can be controlled using the enthalpies and vapour pressures of the reaction products. Heteroatom-substituted (such as yttrium and phosphorus) transition-metal chalcogenides can also be synthesized in this way, thus enabling a generic synthesis approach to engineering phase-selected 2D transition-metal chalcogenide structures with good stability at high temperatures (up to 1,373 kelvin) and achieving high-throughput production of monolayers. We anticipate that these 2D transition-metal chalcogenides will have broad applications for electronics, catalysis and energy storage.


  
Low-barrier hydrogen bonds in enzyme cooperativity 期刊论文
NATURE, 2019, 573 (7775) : 609-+
作者:  Dai, Shaobo;  Funk, Lisa-Marie;  von Pappenheim, Fabian Rabe;  Sautner, Viktor;  Paulikat, Mirko;  Schroder, Benjamin;  Uranga, Jon;  Mata, Ricardo A.;  Tittmann, Kai
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
Site-selective and versatile aromatic C-H functionalization by thianthrenation 期刊论文
NATURE, 2019, 567 (7747) : 223-228
作者:  Berger, Florian;  Plutschack, Matthew B.;  Riegger, Julian;  Yu, Wanwan;  Speicher, Samira;  Ho, Matthew;  Frank, Nils;  Ritter, Tobias
收藏  |  浏览/下载:1/0  |  提交时间:2019/11/27
Direct instrumental identification of catalytically active surface sites 期刊论文
NATURE, 2017, 549 (7670) : 74-+
作者:  Pfisterer, Jonas H. K.;  Liang, Yunchang;  Schneider, Oliver;  Bandarenka, Aliaksandr S.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
High-temperature crystallization of nanocrystals into three-dimensional superlattices 期刊论文
NATURE, 2017, 548 (7666) : 197-+
作者:  Wu, Liheng;  Willis, Joshua J.;  McKay, Ian Salmon;  Diroll, Benjamin T.;  Qin, Jian;  Cargnello, Matteo;  Tassone, Christopher J.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27