GSTDTAP

浏览/检索结果: 共23条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Desert dust deposition supplies essential bioelements to Red Sea corals 期刊论文
Global Change Biology, 2022
作者:  Alice C. A. Blanckaert;  Dario Omanović;  Maoz Fine;  Renaud Grover;  Christine Ferrier-Pagè;  s
收藏  |  浏览/下载:8/0  |  提交时间:2022/02/16
Small 'snowflakes' in the sea play a big role 新闻
来源平台:EurekAlert. 发布日期:2021
作者:  admin
收藏  |  浏览/下载:1/0  |  提交时间:2021/06/07
The genetic law of the minimum 期刊论文
Science, 2020
作者:  Martin F. Polz;  Otto X. Cordero
收藏  |  浏览/下载:16/0  |  提交时间:2020/11/09
Researchers one step closer to bomb-sniffing cyborg locusts 新闻
来源平台:EurekAlert. 发布日期:2020
作者:  admin
收藏  |  浏览/下载:0/0  |  提交时间:2020/08/18
Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication 期刊论文
Global Change Biology, 2020
作者:  Yi Guan;  ;  nke Hohn;  Christian Wild;  Agostino Merico
收藏  |  浏览/下载:6/0  |  提交时间:2020/08/18
Background nutrient concentration determines phytoplankton bloom response to marine heatwaves 期刊论文
Global Change Biology, 2020
作者:  Hakase Hayashida;  Richard J. Matear;  Peter G. Strutton
收藏  |  浏览/下载:6/0  |  提交时间:2020/08/09
Climate change tweaks Arctic marine ecosystems 期刊论文
Science, 2020
作者:  Marcel Babin
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/14
How particulate matter arises from pollutant gases 新闻
来源平台:EurekAlert. 发布日期:2020
作者:  admin
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/15
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation 期刊论文
NATURE, 2020, 581 (7807) : 184-+
作者:  Liang, Guanxiang;  Zhao, Chunyu;  Zhang, Huanjia;  Mattei, Lisa;  Sherrill-Mix, Scott;  Bittinger, Kyle;  Kessler, Lyanna R.;  Wu, Gary D.;  Baldassano, Robert N.;  DeRusso, Patricia;  Ford, Eileen;  Elovitz, Michal A.;  Kelly, Matthew S.;  Patel, Mohamed Z.;  Mazhani, Tiny;  Gerber, Jeffrey S.;  Kelly, Andrea;  Zemel, Babette S.;  Bushman, Frederic D.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).


  
Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO2 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (7) : 2396-2409
作者:  Wei, Xiaorong;  Reich, Peter B.;  Hobbie, Sarah E.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
CO2 elevation  N enrichment  net N mineralization  numbers of legume species  soil inorganic N  species richness