GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat 期刊论文
Science, 2020
作者:  Hongwei Wang;  Silong Sun;  Wenyang Ge;  Lanfei Zhao;  Bingqian Hou;  Kai Wang;  Zhongfan Lyu;  Liyang Chen;  Shoushen Xu;  Jun Guo;  Min Li;  Peisen Su;  Xuefeng Li;  Guiping Wang;  Cunyao Bo;  Xiaojian Fang;  Wenwen Zhuang;  Xinxin Cheng;  Jianwen Wu;  Luhao Dong;  Wuying Chen;  Wen Li;  Guilian Xiao;  Jinxiao Zhao;  Yongchao Hao;  Ying Xu;  Yu Gao;  Wenjing Liu;  Yanhe Liu;  Huayan Yin;  Jiazhu Li;  Xiang Li;  Yan Zhao;  Xiaoqian Wang;  Fei Ni;  Xin Ma;  Anfei Li;  Steven S. Xu;  Guihua Bai;  Eviatar Nevo;  Caixia Gao;  Herbert Ohm;  Lingrang Kong
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/25
DNA-loop extruding condensin complexes can traverse one another 期刊论文
NATURE, 2020
作者:  Li, Xun;  Zhang, Fei;  He, Haiying;  Berry, Joseph J.;  Zhu, Kai;  Xu, Tao
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Condensin, a key component of the structure maintenance of chromosome (SMC) protein complexes, has recently been shown to be a motor that extrudes loops of DNA(1). It remains unclear, however, how condensin complexes work together to collectively package DNA into chromosomes. Here we use time-lapse single-molecule visualization to study mutual interactions between two DNA-loop-extruding yeast condensins. We find that these motor proteins, which, individually, extrude DNA in one direction only are able to dynamically change each other'  s DNA loop sizes, even when far apart. When they are in close proximity, condensin complexes are able to traverse each other and form a loop structure, which we term a Z-loop-three double-stranded DNA helices aligned in parallel with one condensin at each edge. Z-loops can fill gaps left by single loops and can form symmetric dimer motors that pull in DNA from both sides. These findings indicate that condensin may achieve chromosomal compaction using a variety of looping structures.


Single-molecule visualization shows that condensin-a motor protein that extrudes DNA in one direction only-can encounter and pass a second condensin molecule to form a new type of DNA loop that gathers DNA from both sides.