GSTDTAP

浏览/检索结果: 共17条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
The timing and effect of the earliest human arrivals in North America 期刊论文
NATURE, 2020
作者:  Lorena Becerra-Valdivia;  Thomas Higham
收藏  |  浏览/下载:27/0  |  提交时间:2020/08/09

The peopling of the Americas marks a major expansion of humans across the planet. However, questions regarding the timing and mechanisms of this dispersal remain, and the previously accepted model (termed '  Clovis-first'  )-suggesting that the first inhabitants of the Americas were linked with the Clovis tradition, a complex marked by distinctive fluted lithic points(1)-has been effectively refuted. Here we analyse chronometric data from 42 North American and Beringian archaeological sites using a Bayesian age modelling approach, and use the resulting chronological framework to elucidate spatiotemporal patterns of human dispersal. We then integrate these patterns with the available genetic and climatic evidence. The data obtained show that humans were probably present before, during and immediately after the Last Glacial Maximum (about 26.5-19 thousand years ago)(2,3)but that more widespread occupation began during a period of abrupt warming, Greenland Interstadial 1 (about 14.7-12.9 thousand years beforead 2000)(4). We also identify the near-synchronous commencement of Beringian, Clovis and Western Stemmed cultural traditions, and an overlap of each with the last dates for the appearance of 18 now-extinct faunal genera. Our analysis suggests that the widespread expansion of humans through North America was a key factor in the extinction of large terrestrial mammals.


A Bayesian age model suggests that human dispersal to the Americas probably began before the Last Glacial Maximum, overlapping with the last dates of appearance for several faunal genera.


  
Facebook needs to share more with researchers 期刊论文
NATURE, 2020, 579 (7800) : 473-473
作者:  Viglione, Giuliana
收藏  |  浏览/下载:2/0  |  提交时间:2020/07/03

Private companies get free access to data that are more informative than what researchers are forced to compete for.


Private companies get free access to data that are more informative than what researchers are forced to compete for.


  
Population flow drives spatio-temporal distribution of COVID-19 in China 期刊论文
NATURE, 2020
作者:  Fernandez, Diego Carlos;  Komal, Ruchi;  Langel, Jennifer;  Ma, Jun;  Duy, Phan Q.;  Penzo, Mario A.;  Zhao, Haiqing;  Hattar, Samer
收藏  |  浏览/下载:69/0  |  提交时间:2020/07/03

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics(1-4). Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a spatio-temporal '  risk source'  model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan  the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.


Modelling of population flows in China enables the forecasting of the distribution of confirmed cases of COVID-19 and the identification of areas at high risk of SARS-CoV-2 transmission at an early stage.


  
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Molecular basis of beta-arrestin coupling to formoterol-bound beta(1)-adrenoceptor 期刊论文
NATURE, 2020
作者:  Pulliainen, Jouni;  Luojus, Kari;  Derksen, Chris;  Mudryk, Lawrence;  Lemmetyinen, Juha;  Salminen, Miia;  Ikonen, Jaakko;  Takala, Matias;  Cohen, Juval;  Smolander, Tuomo;  Norberg, Johannes
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

The beta(1)-adrenoceptor (beta(1)AR) is a G-protein-coupled receptor (GPCR) that couples(1)to the heterotrimeric G protein G(s). G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of beta-arrestin 1 (beta arr1, also known as arrestin 2), which displaces G(s)and induces signalling through the MAP kinase pathway(2). The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism(3)-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects(4). To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the beta(1)AR-beta arr1 complex in lipid nanodiscs bound to the biased agonist formoterol(5), and the crystal structure of formoterol-bound beta(1)AR coupled to the G-protein-mimetic nanobody(6)Nb80. beta arr1 couples to beta(1)AR in a manner distinct to that(7)of G(s)coupling to beta(2)AR-the finger loop of beta arr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal alpha 5 helix of G(s). The conformation of the finger loop in beta arr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin(8). beta(1)AR coupled to beta arr1 shows considerable differences in structure compared with beta(1)AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of beta(1)AR, and find that formoterol has a lower affinity for the beta(1)AR-beta arr1 complex than for the beta(1)AR-G(s)complex. The structural differences between these complexes of beta(1)AR provide a foundation for the design of small molecules that could bias signalling in the beta-adrenoceptors.


A cryo-electron microscopy structure of the beta 1-adrenoceptor coupled to beta-arrestin 1 and activated by the biased agonist formoterol, as well as the crystal structure of a related formoterol-bound adrenoreceptor, provide insights into biased signalling in these systems.


  
The proteome landscape of the kingdoms of life 期刊论文
NATURE, 2020
作者:  Arzi, Anat;  Rozenkrantz, Liron;  Gorodisky, Lior;  Rozenkrantz, Danit;  Holtzman, Yael;  Ravia, Aharon;  Bekinschtein, Tristan A.;  Galperin, Tatyana;  Krimchansky, Ben-Zion;  Cohen, Gal;  Oksamitni, Anna;  Aidinoff, Elena;  Sacher, Yaron;  Sobel, Noam
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Proteins carry out the vast majority of functions in all biological domains, but for technological reasons their large-scale investigation has lagged behind the study of genomes. Since the first essentially complete eukaryotic proteome was reported(1), advances in mass-spectrometry-based proteomics(2)have enabled increasingly comprehensive identification and quantification of the human proteome(3-6). However, there have been few comparisons across species(7,8), in stark contrast with genomics initiatives(9). Here we use an advanced proteomics workflow-in which the peptide separation step is performed by a microstructured and extremely reproducible chromatographic system-for the in-depth study of 100 taxonomically diverse organisms. With two million peptide and 340,000 stringent protein identifications obtained in a standardized manner, we double the number of proteins with solid experimental evidence known to the scientific community. The data also provide a large-scale case study for sequence-based machine learning, as we demonstrate by experimentally confirming the predicted properties of peptides fromBacteroides uniformis. Our results offer a comparative view of the functional organization of organisms across the entire evolutionary range. A remarkably high fraction of the total proteome mass in all kingdoms is dedicated to protein homeostasis and folding, highlighting the biological challenge of maintaining protein structure in all branches of life. Likewise, a universally high fraction is involved in supplying energy resources, although these pathways range from photosynthesis through iron sulfur metabolism to carbohydrate metabolism. Generally, however, proteins and proteomes are remarkably diverse between organisms, and they can readily be explored and functionally compared at www.proteomesoflife.org.


  
Deciphering human macrophage development at single-cell resolution 期刊论文
NATURE, 2020
作者:  Oberst, Polina;  Fievre, Sabine;  Baumann, Natalia;  Concetti, Cristina;  Bartolini, Giorgia;  Jabaudon, Denis
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Macrophages are the first cells of the nascent immune system to emerge during embryonic development. In mice, embryonic macrophages infiltrate developing organs, where they differentiate symbiotically into tissue-resident macrophages (TRMs)(1). However, our understanding of the origins and specialization of macrophages in human embryos is limited. Here we isolated CD45(+) haematopoietic cells from human embryos at Carnegie stages 11 to 23 and subjected them to transcriptomic profiling by single-cell RNA sequencing, followed by functional characterization of a population of CD45(+)CD34(+)CD44(+) yolk sac-derived myeloid-biased progenitors (YSMPs) by single-cell culture. We also mapped macrophage heterogeneity across multiple anatomical sites and identified diverse subsets, including various types of embryonic TRM (in the head, liver, lung and skin). We further traced the specification trajectories of TRMs from either yolk sac-derived primitive macrophages or YSMP-derived embryonic liver monocytes using both transcriptomic and developmental staging information, with a focus on microglia. Finally, we evaluated the molecular similarities between embryonic TRMs and their adult counterparts. Our data represent a comprehensive characterization of the spatiotemporal dynamics of early macrophage development during human embryogenesis, providing a reference for future studies of the development and function of human TRMs.


Single-cell RNA sequencing of haematopoietic cells from human embryos at different developmental stages sheds light on the development and specification of macrophages in different tissues.


  
Variability in the analysis of a single neuroimaging dataset by many teams 期刊论文
NATURE, 2020
作者:  Liu, Jifeng;  Soria, Roberto;  Zheng, Zheng;  Zhang, Haotong;  Lu, Youjun;  Wang, Song;  Yuan, Hailong
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.


The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.


  
A genomic and epigenomic atlas of prostate cancer in Asian populations 期刊论文
NATURE, 2020: 93-+
作者:  Perry, Rachel J.;  Zhang, Dongyan;  Guerra, Mateus T.;  Brill, Allison L.;  Goedeke, Leigh;  Nasiri, Ali R.;  Rabin-Court, Aviva;  Wang, Yongliang;  Peng, Liang;  Dufour, Sylvie;  Zhang, Ye;  Zhang, Xian-Man;  Butrico, Gina M.;  Toussaint, Keshia;  Nozaki, Yuichi;  Cline, Gary W.;  Petersen, Kitt Falk;  Nathanson, Michael H.;  Ehrlich, Barbara E.;  Shulman, Gerald I.
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Prostate cancer is the second most common cancer in men worldwide(1). Over the past decade, large-scale integrative genomics efforts have enhanced our understanding of this disease by characterizing its genetic and epigenetic landscape in thousands of patients(2,3). However, most tumours profiled in these studies were obtained from patients from Western populations. Here we produced and analysed whole-genome, whole-transcriptome and DNA methylation data for 208 pairs of tumour tissue samples and matched healthy control tissue from Chinese patients with primary prostate cancer. Systematic comparison with published data from 2,554 prostate tumours revealed that the genomic alteration signatures in Chinese patients were markedly distinct from those of Western cohorts: specifically, 41% of tumours contained mutations in FOXA1 and 18% each had deletions in ZNF292 and CHD1. Alterations of the genome and epigenome were correlated and were predictive of disease phenotype and progression. Coding and noncoding mutations, as well as epimutations, converged on pathways that are important for prostate cancer, providing insights into this devastating disease. These discoveries underscore the importance of including population context in constructing comprehensive genomic maps for disease.


Genomic, transcriptomic and DNA methylation data from tissue samples from 208 Chinese patients with prostate cancer define the landscape of alterations in this population, and comparison with data from Western cohorts suggests that the disease may stratify into different molecular subtypes.


  
A HOME FOR EVERY IMAGING DATA SET 期刊论文
NATURE, 2020, 579 (7797) : 162-163
作者:  Gilbert, Nick;  van Leeuwen, Fred
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/03

Repositories let researchers store, share and access life-science images - and maybe even extract new findings.