GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
North Atlantic climate far more predictable than models imply 期刊论文
Nature, 2020
作者:  D. M. Smith;  A. A. Scaife;  R. Eade;  P. Athanasiadis;  A. Bellucci;  I. Bethke;  R. Bilbao;  L. F. Borchert;  L.-P. Caron;  F. Counillon;  G. Danabasoglu;  T. Delworth;  F. J. Doblas-Reyes;  N. J. Dunstone;  V. Estella-Perez;  S. Flavoni;  L. Hermanson;  N. Keenlyside;  V. Kharin;  M. Kimoto;  W. J. Merryfield;  J. Mignot;  T. Mochizuki;  K. Modali;  P.-A. Monerie;  W. A. Mü;  ller;  D. Nicolí;  P. Ortega;  K. Pankatz;  H. Pohlmann;  J. Robson;  P. Ruggieri;  R. Sospedra-Alfonso;  D. Swingedouw;  Y. Wang;  S. Wild;  S. Yeager;  X. Yang;  L. Zhang
收藏  |  浏览/下载:12/0  |  提交时间:2020/08/09
Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (22) : 11954-11960
作者:  Yang, Simon;  Chang, Bonnie X.;  Warner, Mark J.;  Weber, Thomas S.;  Bourbonnais, Annie M.;  Santoro, Alyson E.;  Kock, Annette;  Sonnerup, Rolf E.;  Bullister, John L.;  Wilson, Samuel T.;  Bianchi, Daniele
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/20
nitrous oxide  air-sea gas exchange  seasonal variability  nitrogen cycle  greenhouse gases  
Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms 期刊论文
NATURE, 2020, 579 (7800) : 603-+
作者:  Xu, Wanghuai;  Zheng, Huanxi;  Liu, Yuan;  Zhou, Xiaofeng;  Zhang, Chao;  Song, Yuxin;  Deng, Xu;  Leung, Michael;  Yang, Zhengbao;  Xu, Ronald X.;  Wang, Zhong Lin;  Zeng, Xiao Cheng;  Wang, Zuankai
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption(1). Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers(1,2). Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer(3,4). The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells(5-7). However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


DNA interstrand crosslinks induced by acetaldehyde are repaired by both the Fanconi anaemia pathway and by a second, excision-independent repair mechanism.