GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites 期刊论文
Global Change Biology, 2020
作者:  Jacob A. Nelson;  Oscar Pé;  rez‐;  Priego;  Sha Zhou;  Rafael Poyatos;  Yao Zhang;  Peter D. Blanken;  Teresa E. Gimeno;  Georg Wohlfahrt;  Ankur R. Desai;  Beniamino Gioli;  Jean‐;  Marc Limousin;  Damien Bonal;  Eugé;  nie Paul‐;  Limoges;  Russell L. Scott;  Andrej Varlagin;  Kathrin Fuchs;  Leonardo Montagnani;  Sebastian Wolf;  Nicolas Delpierre;  Daniel Berveiller;  Mana Gharun;  Luca Belelli Marchesini;  Damiano Gianelle;  Ladislav Š;  igut;  Ivan Mammarella;  Lukas Siebicke;  T. Andrew Black;  Alexander Knohl;  Lukas Hö;  rtnagl;  Vincenzo Magliulo;  Simon Besnard;  Ulrich Weber;  Nuno Carvalhais;  Mirco Migliavacca;  Markus Reichstein;  Martin Jung
收藏  |  浏览/下载:13/0  |  提交时间:2020/10/12
SOSTDC1-producing follicular helper T cells promote regulatory follicular T cell differentiation 期刊论文
Science, 2020
作者:  Xin Wu;  Yun Wang;  Rui Huang;  Qujing Gai;  Haofei Liu;  Meimei Shi;  Xiang Zhang;  Yonglin Zuo;  Longjuan Chen;  Qiwen Zhao;  Yu Shi;  Fengchao Wang;  Xiaowei Yan;  Huiping Lu;  Senlin Xu;  Xiaohong Yao;  Lin Chen;  Xia Zhang;  Qiang Tian;  Ziyan Yang;  Bo Zhong;  Chen Dong;  Yan Wang;  Xiu-Wu Bian;  Xindong Liu
收藏  |  浏览/下载:19/0  |  提交时间:2020/08/25
Giant piezoelectricity in oxide thin films with nanopillar structure 期刊论文
Science, 2020
作者:  Huajun Liu;  Haijun Wu;  Khuong Phuong Ong;  Tiannan Yang;  Ping Yang;  Pranab Kumar Das;  Xiao Chi;  Yang Zhang;  Caozheng Diao;  Wai Kong Alaric Wong;  Eh Piew Chew;  Yi Fan Chen;  Chee Kiang Ivan Tan;  Andrivo Rusydi;  Mark B. H. Breese;  David J. Singh;  Long-Qing Chen;  Stephen J. Pennycook;  Kui Yao
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/21
Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease 期刊论文
Science, 2020
作者:  Wenhao Dai;  Bing Zhang;  Xia-Ming Jiang;  Haixia Su;  Jian Li;  Yao Zhao;  Xiong Xie;  Zhenming Jin;  Jingjing Peng;  Fengjiang Liu;  Chunpu Li;  You Li;  Fang Bai;  Haofeng Wang;  Xi Cheng;  Xiaobo Cen;  Shulei Hu;  Xiuna Yang;  Jiang Wang;  Xiang Liu;  Gengfu Xiao;  Hualiang Jiang;  Zihe Rao;  Lei-Ke Zhang;  Yechun Xu;  Haitao Yang;  Hong Liu
收藏  |  浏览/下载:18/0  |  提交时间:2020/06/22
Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol 期刊论文
Science, 2020
作者:  Lu Zhang;  Yao Zhao;  Yan Gao;  Lijie Wu;  Ruogu Gao;  Qi Zhang;  Yinan Wang;  Chengyao Wu;  Fangyu Wu;  Sudagar S. Gurcha;  Natacha Veerapen;  Sarah M. Batt;  Wei Zhao;  Ling Qin;  Xiuna Yang;  Manfu Wang;  Yan Zhu;  Bing Zhang;  Lijun Bi;  Xian’en Zhang;  Haitao Yang;  Luke W. Guddat;  Wenqing Xu;  Quan Wang;  Jun Li;  Gurdyal S. Besra;  Zihe Rao
收藏  |  浏览/下载:10/0  |  提交时间:2020/06/16
Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells 期刊论文
Science, 2020
作者:  Zhiwei Zhou;  Huabin He;  Kun Wang;  Xuyan Shi;  Yupeng Wang;  Ya Su;  Yao Wang;  Da Li;  Wang Liu;  Yongliang Zhang;  Lianjun Shen;  Weidong Han;  Lin Shen;  Jingjin Ding;  Feng Shao
收藏  |  浏览/下载:13/0  |  提交时间:2020/06/01
Structure of the RNA-dependent RNA polymerase from COVID-19 virus 期刊论文
Science, 2020
作者:  Yan Gao;  Liming Yan;  Yucen Huang;  Fengjiang Liu;  Yao Zhao;  Lin Cao;  Tao Wang;  Qianqian Sun;  Zhenhua Ming;  Lianqi Zhang;  Ji Ge;  Litao Zheng;  Ying Zhang;  Haofeng Wang;  Yan Zhu;  Chen Zhu;  Tianyu Hu;  Tian Hua;  Bing Zhang;  Xiuna Yang;  Jun Li;  Haitao Yang;  Zhijie Liu;  Wenqing Xu;  Luke W. Guddat;  Quan Wang;  Zhiyong Lou;  Zihe Rao
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/20
Plastic pollution in croplands threatens long‐term food security 期刊论文
Global Change Biology, 2020
作者:  Dan Zhang;  Ee Ling Ng;  Wanli Hu;  Hongyuan Wang;  Pablo Galaviz;  Hude Yang;  Wentao Sun;  Chongxiao Li;  Xingwang Ma;  Bin Fu;  Peiyi Zhao;  Fulin Zhang;  Shuqin Jin;  Mingdong Zhou;  Lianfeng Du;  Chang Peng;  Xuejun Zhang;  Zhiyu Xu;  Bin Xi;  Xiaoxia Liu;  Shiyou Sun;  Zhenhua Cheng;  Lihua Jiang;  Yufeng Wang;  Liang Gong;  Changlin Kou;  Yan Li;  Youhua Ma;  Dongfeng Huang;  Jian Zhu;  Jianwu Yao;  Chaowen Lin;  Song Qin;  Liuqiang Zhou;  Binghui He;  Deli Chen;  Huanchun Li;  Limei Zhai;  Qiuliang Lei;  Shuxia Wu;  Yitao Zhang;  Junting Pan;  Baojing Gu;  Hongbin Liu
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1 期刊论文
NATURE, 2020, 583 (7814) : 145-+
作者:  Jin, Zhenming;  Du, Xiaoyu;  Xu, Yechun;  Deng, Yongqiang;  Liu, Meiqin;  Zhao, Yao;  Zhang, Bing;  Li, Xiaofeng;  Zhang, Leike;  Peng, Chao;  Duan, Yinkai;  Yu, Jing;  Wang, Lin;  Yang, Kailin;  Liu, Fengjiang;  Jiang, Rendi;  Yang, Xinglou;  You, Tian;  Liu, Xiaoce
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Voltage-gated potassium (K-v) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges(1-3), the general determinants of channel gating polarity remain poorly understood(4). Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped K-v channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated K-v channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5-7 angstrom can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels(5), and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.


The cryo-electron microscopy structure of the hyperpolarization-activated K+ channel KAT1 points to a direct-coupling mechanism between S4 movement and the reorientation of the C-linker.


  
A lower X-gate in TASK channels traps inhibitors within the vestibule 期刊论文
NATURE, 2020
作者:  Chen, Tao;  Nomura, Kinya;  Wang, Xiaolin;  Sohrabi, Reza;  Xu, Jin;  Yao, Lingya;  Paasch, Bradley C.;  Ma, Li;  Kremer, James;  Cheng, Yuti;  Zhang, Li;  Wang, Nian;  Wang, Ertao;  Xin, Xiu-Fang;  He, Sheng Yang
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K-2P) channel family-are found in neurons(1), cardiomyocytes(2-4) and vascular smooth muscle cells(5), where they are involved in the regulation of heart rate(6), pulmonary artery tone(5,7), sleep/wake cycles(8) and responses to volatile anaesthetics(8-11). K-2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli(12-15). Unlike other K-2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation(16). In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below  however, the K-2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an '  X-gate'  -created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues ((VLRFMT248)-V-243) that are essential for responses to volatile anaesthetics(10), neurotransmitters(13) and G-protein-coupled receptors(13). Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.


The X-ray crystal structure of the potassium channel TASK-1 reveals the presence of an X-gate, which traps small-molecule inhibitors in the intramembrane vestibule and explains their low washout rates from the channel.