GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Liquid flow and control without solid walls 期刊论文
NATURE, 2020, 581 (7806) : 58-+
作者:  Hellmuth, Susanne;  Stemmann, Olaf
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Wall-free liquid channels surrounded by an immiscible magnetic liquid can be used to create liquid circuitry or to transport human blood without damaging the blood cells by moving permanent magnets.


When miniaturizing fluidic circuitry, the solid walls of the fluid channels become increasingly important(1) because they limit the flow rates achievable for a given pressure drop, and they are prone to fouling(2). Approaches for reducing the wall interactions include hydrophobic coatings(3), liquid-infused porous surfaces(4-6), nanoparticle surfactant jamming(7), changes to surface electronic structure(8), electrowetting(9,10), surface tension pinning(11,12) and use of atomically flat channels(13). A better solution may be to avoid the solid walls altogether. Droplet microfluidics and sheath flow achieve this but require continuous flow of the central liquid and the surrounding liquid(1,14). Here we demonstrate an approach in which aqueous liquid channels are surrounded by an immiscible magnetic liquid, both of which are stabilized by a quadrupolar magnetic field. This creates self-healing, non-clogging, anti-fouling and near-frictionless liquid-in-liquid fluidic channels. Manipulation of the field provides flow control, such as valving, splitting, merging and pumping. The latter is achieved by moving permanent magnets that have no physical contact with the liquid channel. We show that this magnetostaltic pumping method can be used to transport whole human blood with very little damage due to shear forces. Haemolysis (rupture of blood cells) is reduced by an order of magnitude compared with traditional peristaltic pumping, in which blood is mechanically squeezed through a plastic tube. Our liquid-in-liquid approach provides new ways to transport delicate liquids, particularly when scaling channels down to the micrometre scale, with no need for high pressures, and could also be used for microfluidic circuitry.


  
A droplet-based electricity generator with high instantaneous power density 期刊论文
NATURE, 2020, 578 (7795) : 392-+
作者:  Dabney, Will;  Kurth-Nelson, Zeb;  Uchida, Naoshige;  Starkweather, Clara Kwon;  Hassabis, Demis;  Munos, Remi;  Botvinick, Matthew
收藏  |  浏览/下载:173/0  |  提交时间:2020/07/03

Extensive efforts have been made to harvest energy from water in the form of raindrops(1-6), river and ocean waves(7,8), tides(9) and others(10-17). However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects-as seen in characterizations of the charge generation and transfer that occur at solid-liquid(1-4) or liquid-liquid(5,18) interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.


A device involving a polytetrafluoroethylene film, an indium tin oxide substrate and an aluminium electrode allows improved electricity generation from water droplets, which bridge the previously disconnected circuit components.