GSTDTAP

浏览/检索结果: 共92条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1 期刊论文
NATURE, 2020, 583 (7814) : 145-+
作者:  Jin, Zhenming;  Du, Xiaoyu;  Xu, Yechun;  Deng, Yongqiang;  Liu, Meiqin;  Zhao, Yao;  Zhang, Bing;  Li, Xiaofeng;  Zhang, Leike;  Peng, Chao;  Duan, Yinkai;  Yu, Jing;  Wang, Lin;  Yang, Kailin;  Liu, Fengjiang;  Jiang, Rendi;  Yang, Xinglou;  You, Tian;  Liu, Xiaoce
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Voltage-gated potassium (K-v) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges(1-3), the general determinants of channel gating polarity remain poorly understood(4). Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped K-v channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated K-v channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5-7 angstrom can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels(5), and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.


The cryo-electron microscopy structure of the hyperpolarization-activated K+ channel KAT1 points to a direct-coupling mechanism between S4 movement and the reorientation of the C-linker.


  
Oxygen Vacancy Substitution Linked to Ferric Iron in Bridgmanite at 27 GPa 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Fei, Hongzhan;  Liu, Zhaodong;  McCammon, Catherine;  Katsura, Tomoo
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
bridgmanite  ferric iron  oxygen vacancy substitution  charge-coupled substitution  lower mantle  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
Evolution of the Charge Structure and Lightning Discharge Characteristics of a Qinghai-Tibet Plateau Thunderstorm Dominated by Negative Cloud-to-Ground Flashes 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (5)
作者:  Li, Yajun;  Zhang, Guangshu;  Zhang, Yijun
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Charge structure  Negative cloud-to-ground flash  The strong negative charge region  Lightning type  Lightning frequency  Thunderstorm of Qinghai-Tibet Plateau  
Ion-Scale Flux Rope Observed inside a Hot Flow Anomaly 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (5)
作者:  Bai, Shi-Chen;  Shi, Quanqi;  Liu, Terry Z.;  Zhang, Hui;  Yue, Chao;  Sun, Wei-Jie;  Tian, Anmin;  Degeling, Alexander W.;  Bortnik, Jacob;  Rae, I. Jonathan;  Wang, Mengmeng
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
Termination of thunderstorm-related bursts of energetic radiation and particles by inverted intracloud and hybrid lightning discharges 期刊论文
ATMOSPHERIC RESEARCH, 2020, 233
作者:  Chilingarian, A.;  Khanikyants, Y.;  Rakov, V. A.;  Soghomonyan, S.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
Lightning type  Thundercloud  Electron acceleration  Energetic radiation  Cloud charge structure  Electric field  
Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites 期刊论文
NATURE, 2020, 580 (7803) : 360-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices(1,2). This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively(3)) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects(4). Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance(5), perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance(6). The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions(7) and with local strain(8), both of which make devices less stable(9). Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process(10,11), we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.


  
Changes to the Appearance of Optical Lightning Flashes Observed From Space According to Thunderstorm Organization and Structure 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (4)
作者:  Peterson, Michael;  Rudlosky, Scott;  Zhang, Daile
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Investigation of the fine structure of antihydrogen 期刊论文
NATURE, 2020, 578 (7795) : 375-+
作者:  Zhang, Bing;  Ma, Sai;  Rachmin, Inbal;  He, Megan;  Baral, Pankaj;  Choi, Sekyu;  Goncalves, William A.;  Shwartz, Yulia;  Fast, Eva M.;  Su, Yiqun;  Zon, Leonard I.;  Regev, Aviv;  Buenrostro, Jason D.;  Cunha, Thiago M.;  Chiu, Isaac M.;  Fisher, David E.;  Hsu, Ya-Chieh
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics(2-5). Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S-2P Lyman-alpha transitions in antihydrogen(6), we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P(1/2)-2P(3/2)) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S-2S transition frequency(6,7), we find that the classic Lamb shift in antihydrogen (2S(1/2)-2P(1/2) splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge-parity-time symmetry(8) and towards the determination of other fundamental quantities, such as the antiproton charge radius(9,10), in this antimatter system.


Precision measurements of the 1S-2P transition in antihydrogen that take into account the standard Zeeman and hyperfine effects confirm the predictions of quantum electrodynamics.


  
Cloud history can change water-ice-surface interactions of oxide mineral aerosols: a case study on silica 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (2) : 1075-1087
作者:  Abdelmonem, Ahmed;  Ratnayake, Sanduni;  Toner, Jonathan D.;  Luetzenkirchen, Johannes
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/02