GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018 期刊论文
NATURE, 2020, 581 (7808) : 294-+
作者:  Ibrahim, Nizar;  Maganuco, Simone;  Dal Sasso, Cristiano;  Fabbri, Matteo;  Auditore, Marco;  Bindellini, Gabriele;  Martill, David M.;  Zouhri, Samir;  Mattarelli, Diego A.;  Unwin, David M.;  Wiemann, Jasmina;  Bonadonna, Davide;  Amane, Ayoub;  Jakubczak, Juliana;  Joger, Ulrich;  Lauder, George V.;  Pierce, Stephanie E.
收藏  |  浏览/下载:18/0  |  提交时间:2020/05/25

Warming surface temperatures have driven a substantial reduction in the extent and duration of Northern Hemisphere snow cover(1-3). These changes in snow cover affect Earth'  s climate system via the surface energy budget, and influence freshwater resources across a large proportion of the Northern Hemisphere(4-6). In contrast to snow extent, reliable quantitative knowledge on seasonal snow mass and its trend is lacking(7-9). Here we use the new GlobSnow 3.0 dataset to show that the 1980-2018 annual maximum snow mass in the Northern Hemisphere was, on average, 3,062 +/- 35 billion tonnes (gigatonnes). Our quantification is for March (the month that most closely corresponds to peak snow mass), covers non-alpine regions above 40 degrees N and, crucially, includes a bias correction based on in-field snow observations. We compare our GlobSnow 3.0 estimates with three independent estimates of snow mass, each with and without the bias correction. Across the four datasets, the bias correction decreased the range from 2,433-3,380 gigatonnes (mean 2,867) to 2,846-3,062 gigatonnes (mean 2,938)-a reduction in uncertainty from 33% to 7.4%. On the basis of our bias-corrected GlobSnow 3.0 estimates, we find different continental trends over the 39-year satellite record. For example, snow mass decreased by 46 gigatonnes per decade across North America but had a negligible trend across Eurasia  both continents exhibit high regional variability. Our results enable a better estimation of the role of seasonal snow mass in Earth'  s energy, water and carbon budgets.


Applying a bias correction to a state-of-the-art dataset covering non-alpine regions of the Northern Hemisphere and to three other datasets yields a more constrained quantification of snow mass in March from 1980 to 2018.


  
A pause in Southern Hemisphere circulation trends due to the Montreal Protocol 期刊论文
NATURE, 2020, 579 (7800) : 544-548
作者:  Imai, Yu;  Meyer, Kirsten J.;  Iinishi, Akira;  Favre-Godal, Quentin;  Green, Robert;  Manuse, Sylvie;  Caboni, Mariaelena;  Mori, Miho;  Niles, Samantha;  Ghiglieri, Meghan;  Honrao, Chandrashekhar;  Ma, Xiaoyu;  Guo, Jason J.;  Makriyannis, Alexandros;  Linares-Otoya, Luis;  Boehringer, Nils;  Wuisan, Zerlina G.;  Kaur, Hundeep;  Wu, Runrun;  Mateus, Andre
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Observations show robust near-surface trends in Southern Hemisphere tropospheric circulation towards the end of the twentieth century, including a poleward shift in the mid-latitude jet(1,2), a positive trend in the Southern Annular Mode(1,3-6) and an expansion of the Hadley cell(7,8). It has been established that these trends were driven by ozone depletion in the Antarctic stratosphere due to emissions of ozone-depleting substances(9-11). Here we show that these widely reported circulation trends paused, or slightly reversed, around the year 2000. Using a pattern-based detection and attribution analysis of atmospheric zonal wind, we show that the pause in circulation trends is forced by human activities, and has not occurred owing only to internal or natural variability of the climate system. Furthermore, we demonstrate that stratospheric ozone recovery, resulting from the Montreal Protocol, is the key driver of the pause. Because pre-2000 circulation trends have affected precipitation(12-14), and potentially ocean circulation and salinity(15-17), we anticipate that a pause in these trends will have wider impacts on the Earth system. Signatures of the effects of the Montreal Protocol and the associated stratospheric ozone recovery might therefore manifest, or have already manifested, in other aspects of the Earth system.


  
Year-to-year variability of surface air temperature over China in winter 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (4) : 1692-1705
作者:  Xiao, Dong;  Zuo, Zhiyan;  Zhang, Renhe;  Zhang, Xingyu;  He, Qiong
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/09
year-to-year variability  surface air temperature  China  winter  
Changes in temporal distribution of precipitation in a Mediterranean area (Tuscany, Italy) 1955-2013 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (3) : 1366-1374
作者:  Bartolini, Giorgio;  Grifoni, Daniele;  Magno, Ramona;  Torrigiani, Tommaso;  Gozzini, Bernardo
收藏  |  浏览/下载:4/0  |  提交时间:2019/04/09
precipitation concentration  precipitation changes  PCI index  trend analysis  seasonality  year-to-year variability  central Italy  water management