GSTDTAP

浏览/检索结果: 共177条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
一种恢复脆弱干旱区土壤并提高冬豌豆产量的可行方法 快报文章
资源环境快报,2023年第20期
作者:  董利苹
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:441/0  |  提交时间:2023/10/31
Rehabilitate Weak Arid Soil  Practicable Solution  Compost and Humic Acid Amendments  Winter Field Pea  Production  
美国极端冬季天气与北极变暖有关 快报文章
气候变化快报,2020年第18期
作者:  秦冰雪
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:707/1  |  提交时间:2021/09/22
Climate Change  Extreme Winter Weather  Stratospheric Polar Vortex  
Impacts of Two East Asian Atmospheric Circulation Modes on Black Carbon Aerosol Over the Tibetan Plateau in Winter 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (12)
作者:  Yuan, Tiangang;  Chen, Siyu;  Wang, Lin;  Yang, Yaoxian;  Bi, Hongru;  Zhang, Xiaorui;  Zhang, Yue
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/18
black carbon  East Asian winter monsoon  Tibetan Plateau  transport  WRF-Chem  
Changes of crop failure risks in the United States associated with large-scale climate oscillations in the Atlantic and Pacific Oceans 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Schillerberg, Tayler A.;  Tian, Di
收藏  |  浏览/下载:11/0  |  提交时间:2020/08/18
climate oscillation  crop failure  Bayesian analysis  maize  winter wheat  the United States  
Direct Observation of Winter Meltwater Drainage From the Greenland Ice Sheet 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Pitcher, Lincoln H.;  Smith, Laurence C.;  Gleason, Colin J.;  Miege, Clement;  Ryan, Johnny C.;  Hagedorn, Birgit;  van As, Dirk;  Chu, Winnie;  Forster, Richard R.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/02
Greenland Ice Sheet  subglacial hydrology  meltwater retention  meltwater storage  surface melt  winter  
"Warm Arctic-Cold Siberia" as an Internal Mode Instigated by North Atlantic Warming 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Jin, Chunhan;  Wang, Bin;  Yang, Young-Min;  Liu, Jian
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
"Warm Arctic-Cold Siberia" pattern  AMO  multi-decadal variations  internal mode of variability  Asian winter monsoon  greenhouse gases forcing  
The impact of climate change on demand of ski tourism - a simulation study based on stated preferences 期刊论文
ECOLOGICAL ECONOMICS, 2020, 170
作者:  Steiger, Robert;  Posch, Eva;  Tappeiner, Gottfried;  Walde, Janette
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
Winter tourism  Climate change  Regional impact  Choice experiment  Alpine region  Demand simulation  
Multi-sensor observations of an elevated rotor during a mountain wave event in the Eastern Pyrenees 期刊论文
ATMOSPHERIC RESEARCH, 2020, 234
作者:  Udina, Mireia;  Bech, Joan;  Gonzalez, Sergi;  Rosa Soler, Maria;  Paci, Alexandre;  Ramon Miro, Josep;  Trapero, Laura;  Donier, Jean Marie;  Douffet, Thierry;  Codina, Bernat;  Pineda, Nicolau
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Mountain waves  Rotor  Turbulence  Winter storm  Eastern Pyrenees  Cerdanya  
Defining frigid winter illuminates its loss across seasonally snow-covered areas of eastern North America 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Contosta, Alexandra R.;  Casson, Nora J.;  Nelson, Sarah J.;  Garlick, Sarah
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
frigid winter  climate change  seasons  temperature  snow cover  
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.