GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Stiffness of the human foot and evolution of the transverse arch 期刊论文
NATURE, 2020
作者:  Fujioka, Yuko;  Alam, Jahangir Md.;  Noshiro, Daisuke;  Mouri, Kazunari;  Ando, Toshio;  Okada, Yasushi;  May, Alexander I.;  Knorr, Roland L.;  Suzuki, Kuninori;  Ohsumi, Yoshinori;  Noda, Nobuo N.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The transverse tarsal arch, acting through the inter-metatarsal tissues, is important for the longitudinal stiffness of the foot and its appearance is a key step in the evolution of human bipedalism.


The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism(1-6). The uniquely arched morphology of the human midfoot is thought to stiffen it(5-9), whereas other primates have flat feet that bend severely in the midfoot(7,10,11). However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics(12,13), podiatry(14,15) and palaeontology(4-6). These debates centre on the medial longitudinal arch(5,6) and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot(16). Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion.


  
Mechanical regulation of glycolysis via cytoskeleton architecture 期刊论文
NATURE, 2020, 578 (7796) : 621-+
作者:  Faivre, Emily J.;  McDaniel, Keith F.;  Albert, Daniel H.;  Mantena, Srinivasa R.;  Plotnik, Joshua P.;  Wilcox, Denise;  Zhang, Lu;  Bui, Mai H.;  Sheppard, George S.;  Wang, Le;  Sehgal, Vasudha;  Lin, Xiaoyu;  Huang, Xiaoli;  Lu, Xin;  Uziel, Tamar;  Hessler, Paul;  Lam, Lloyd T.;  Bellin, Richard J.;  Mehta, Gaurav;  Fidanze, Steve;  Pratt, John K.;  Liu, Dachun;  Hasvold, Lisa A.;  Sun, Chaohong;  Panchal, Sanjay C.;  Nicolette, John J.;  Fossey, Stacey L.;  Park, Chang H.;  Longenecker, Kenton;  Bigelow, Lance;  Torrent, Maricel;  Rosenberg, Saul H.;  Kati, Warren M.;  Shen, Yu
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The mechanics of the cellular microenvironment continuously modulates cell functions such as growth, survival, apoptosis, differentiation and morphogenesis via cytoskeletal remodelling and actomyosin contractility(1-3). Although all of these processes consume energy(4,5), it is unknown whether and how cells adapt their metabolic activity to variable mechanical cues. Here we report that the transfer of human bronchial epithelial cells from stiff to soft substrates causes a downregulation of glycolysis via proteasomal degradation of the rate-limiting metabolic enzyme phosphofructokinase (PFK). PFK degradation is triggered by the disassembly of stress fibres, which releases the PFK-targeting E3 ubiquitin ligase tripartite motif (TRIM)-containing protein 21 (TRIM21). Transformed non-small-cell lung cancer cells, which maintain high glycolytic rates regardless of changing environmental mechanics, retain PFK expression by downregulating TRIM21, and by sequestering residual TRIM21 on a stress-fibre subset that is insensitive to substrate stiffness. Our data reveal a mechanism by which glycolysis responds to architectural features of the actomyosin cytoskeleton, thus coupling cell metabolism to the mechanical properties of the surrounding tissue. These processes enable normal cells to tune energy production in variable microenvironments, whereas the resistance of the cytoskeleton in response to mechanical cues enables the persistence of high glycolytic rates in cancer cells despite constant alterations of the tumour tissue.


Glycolysis in normal epithelial cells responds to microenvironmental mechanics via the modulation of actin bundles that sequester the phosphofructokinase-targeting ubiquitin ligase TRIM21, a process superseded by persistent actin bundles in cancer cells.


  
Ahead of the curve in the evolution of human feet 期刊论文
NATURE, 2020, 579 (7797) : 31-32
作者:  Breathnach, Ciara;  Margaria, Tiziana
收藏  |  浏览/下载:3/0  |  提交时间:2020/07/03

The longitudinal arch has long been considered a crucial structure that provides stiffness to the human foot. Now the transverse arch is stepping into the spotlight, with a proposed central role in the evolution of human foot stiffness.


  
In Situ Mechanical Properties of Shallow Gas Hydrate Deposits in the Deep Seabed 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019
作者:  Yoneda, Jun;  Kida, Masato;  Konno, Yoshihiro;  Jin, Yusuke;  Morita, Sumito;  Tenma, Norio
收藏  |  浏览/下载:8/0  |  提交时间:2020/02/17
gas hydrate  stiffness  pressure coring  compression test  deep seabed  
Development of a generic model describing modulus of elasticity of Pinus radiata in Chile and New Zealand 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 453
作者:  Watt, Michael S.;  Trincado, Guillermo
收藏  |  浏览/下载:8/0  |  提交时间:2020/02/17
Climate  Modulus of elasticity  Stem slenderness  Stiffness  Velocity  
Modelling the influence of environment on juvenile modulus of elasticity in Pinus radiata grown in Chile 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2017, 400
作者:  Watt, Michael S.;  Trincado, Guillermo
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/09
Radiata pine  Slenderness  Stiffness  Velocity