GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Nature Communications:地幔的复杂性远超预期 快报文章
地球科学快报,2025年第4期
作者:  王晓晨
Microsoft Word(12Kb)  |  收藏  |  浏览/下载:469/0  |  提交时间:2025/02/25
post-spinel  mantle  
Discovery of New-Structured Post-Spinel MgFe2O4: Crystal Structure and High-Pressure Phase Relations 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Ishii, Takayuki;  Miyajima, Nobuyoshi;  Sinmyo, Ryosuke;  Kojitani, Hiroshi;  Mori, Daisuke;  Inaguma, Yoshiyuki;  Akaogi, Masaki
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
high pressure  Rietveld analysis  phase transition  spinel  mantle  magnesioferrite  
Heterogeneous integration of single-crystalline complex-oxide membranes 期刊论文
NATURE, 2020, 578 (7793) : 75-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:48/0  |  提交时间:2020/07/03

Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices(1-4). Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain(5-7). The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities(8,9).