GSTDTAP

浏览/检索结果: 共34条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis 期刊论文
NATURE, 2020, 577 (7789) : 260-+
作者:  Kakiuchi, Nobuyuki;  Yoshida, Kenichi;  Uchino, Motoi;  Kihara, Takako;  Akaki, Kotaro;  Inoue, Yoshikage;  Kawada, Kenji;  Nagayama, Satoshi;  Yokoyama, Akira;  Yamamoto, Shuji;  Matsuura, Minoru;  Horimatsu, Takahiro;  Hirano, Tomonori;  Goto, Norihiro;  Takeuchi, Yasuhide;  Ochi, Yotaro;  Shiozawa, Yusuke;  Kogure, Yasunori;  Watatani, Yosaku;  Fujii, Yoichi;  Kim, Soo Ki;  Kon, Ayana;  Kataoka, Keisuke;  Yoshizato, Tetsuichi;  Nakagawa, Masahiro M.;  Yoda, Akinori;  Nanya, Yasuhito;  Makishima, Hideki;  Shiraishi, Yuichi;  Chiba, Kenichi;  Tanaka, Hiroko;  Sanada, Masashi;  Sugihara, Eiji;  Sato, Taka-aki;  Maruyama, Takashi;  Miyoshi, Hiroyuki;  Taketo, Makoto Mark;  Oishi, Jun;  Inagaki, Ryosaku;  Ueda, Yutaka;  Okamoto, Shinya;  Okajima, Hideaki;  Sakai, Yoshiharu;  Sakurai, Takaki;  Haga, Hironori;  Hirota, Seiichi;  Ikeuchi, Hiroki;  Nakase, Hiroshi;  Marusawa, Hiroyuki;  Chiba, Tsutomu;  Takeuchi, Osamu;  Miyano, Satoru;  Seno, Hiroshi;  Ogawa, Seishi
收藏  |  浏览/下载:78/0  |  提交时间:2020/07/03

Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer(1-3). However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.


  
Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex 期刊论文
NATURE, 2020
作者:  Kalaany, Nada Y.;  Sabatini, David M.
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Mitochondria take up Ca2+ through the mitochondrial calcium uniporter complex to regulate energy production, cytosolic Ca2+ signalling and cell death(1,2). In mammals, the uniporter complex (uniplex) contains four core components: the pore-forming MCU protein, the gatekeepers MICU1 and MICU2, and an auxiliary subunit, EMRE, essential for Ca2+ transport(3-8). To prevent detrimental Ca2+ overload, the activity of MCU must be tightly regulated by MICUs, which sense changes in cytosolic Ca2+ concentrations to switch MCU on and off(9,10). Here we report cryo-electron microscopic structures of the human mitochondrial calcium uniporter holocomplex in inhibited and Ca2+-activated states. These structures define the architecture of this multicomponent Ca2+-uptake machinery and reveal the gating mechanism by which MICUs control uniporter activity. Our work provides a framework for understanding regulated Ca2+ uptake in mitochondria, and could suggest ways of modulating uniporter activity to treat diseases related to mitochondrial Ca2+ overload.


Cryo-electron microscopy reveals the structures of the mitochondrial calcium uniporter holocomplex in low- and high-calcium conditions, showing the gating mechanism that underlies uniporter activation in response to intracellular calcium signals.


  
Months-long thousand-kilometre-scale wobbling before great subduction earthquakes 期刊论文
NATURE, 2020, 580 (7805) : 628-+
作者:  Son, Hyungmok;  Park, Juliana J.;  Ketterle, Wolfgang;  Jamison, Alan O.
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13

Observed reversals in GNSS surface motions suggests greatly enhanced slab pull in the months preceding the great subduction earthquakes in Maule (Chile, 2010) and Tohoku-oki (Japan, 2011) of moment magnitudes 8.8 and 9.0.


Megathrust earthquakes are responsible for some of the most devastating natural disasters(1). To better understand the physical mechanisms of earthquake generation, subduction zones worldwide are continuously monitored with geophysical instrumentation. One key strategy is to install stations that record signals from Global Navigation Satellite Systems(2,3) (GNSS), enabling us to track the non-steady surface motion of the subducting and overriding plates before, during and after the largest events(4-6). Here we use a recently developed trajectory modelling approach(7) that is designed to isolate secular tectonic motions from the daily GNSS time series to show that the 2010 Maule, Chile (moment magnitude 8.8) and 2011 Tohoku-oki, Japan (moment magnitude 9.0) earthquakes were preceded by reversals of 4-8 millimetres in surface displacement that lasted several months and spanned thousands of kilometres. Modelling of the surface displacement reversal that occurred before the Tohoku-oki earthquake suggests an initial slow slip followed by a sudden pulldown of the Philippine Sea slab so rapid that it caused a viscoelastic rebound across the whole of Japan. Therefore, to understand better when large earthquakes are imminent, we must consider not only the evolution of plate interface frictional processes but also the dynamic boundary conditions from deeper subduction processes, such as sudden densification of metastable slab.


  
Preseismic Fault Creep and Elastic Wave Amplitude Precursors Scale With Lab Earthquake Magnitude for the Continuum of Tectonic Failure Modes 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Shreedharan, Srisharan;  Bolton, David Chas;  Riviere, Jacques;  Marone, Chris
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
earthquake precursors  earthquake prediction  transmissivity  acoustic signals  fault creep  slow slip  
Olfactory sniffing signals consciousness in unresponsive patients with brain injuries 期刊论文
NATURE, 2020
作者:  Hellmuth, Susanne;  Gomez-H, Laura;  Pendas, Alberto M.;  Stemmann, Olaf
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

After severe brain injury, it can be difficult to determine the state of consciousness of a patient, to determine whether the patient is unresponsive or perhaps minimally conscious(1), and to predict whether they will recover. These diagnoses and prognoses are crucial, as they determine therapeutic strategies such as pain management, and can underlie end-of-life decisions(2,3). Nevertheless, there is an error rate of up to 40% in determining the state of consciousness in patients with brain injuries(4,5). Olfaction relies on brain structures that are involved in the basic mechanisms of arousal(6), and we therefore hypothesized that it may serve as a biomarker for consciousness(7). Here we use a non-verbal non-task-dependent measure known as the sniff response(8-11) to determine consciousness in patients with brain injuries. By measuring odorant-dependent sniffing, we gain a sensitive measure of olfactory function(10-15). We measured the sniff response repeatedly over time in patients with severe brain injuries and found that sniff responses significantly discriminated between unresponsive and minimally conscious states at the group level. Notably, at the single-patient level, if an unresponsive patient had a sniff response, this assured future regaining of consciousness. In addition, olfactory sniff responses were associated with long-term survival rates. These results highlight the importance of olfaction in human brain function, and provide an accessible tool that signals consciousness and recovery in patients with brain injuries.


Odorant-dependent sniff responses predicted the long-term survival rates of patients with severe brain injury, and discriminated between individuals who were unresponsive and in minimally conscious states.


  
Laser spectroscopy of pionic helium atoms 期刊论文
NATURE, 2020, 581 (7806) : 37-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Charged pions(1) are the lightest and longest-lived mesons. Mesonic atoms are formed when an orbital electron in an atom is replaced by a negatively charged meson. Laser spectroscopy of these atoms should permit the mass and other properties of the meson to be determined with high precision and could place upper limits on exotic forces involving mesons (as has been done in other experiments on antiprotons(2-9)). Determining the mass of the pi(-) meson in particular could help to place direct experimental constraints on the mass of the muon antineutrino(10-13). However, laser excitations of mesonic atoms have not been previously achieved because of the small number of atoms that can be synthesized and their typically short (less than one picosecond) lifetimes against absorption of the mesons into the nuclei(1). Metastable pionic helium (pi He-4(+)) is a hypothetical(14-16) three-body atom composed of a helium-4 nucleus, an electron and a pi(-) occupying a Rydberg state of large principal (n approximate to 16) and orbital angular momentum (l approximate to n - 1) quantum numbers. The pi He-4(+) atom is predicted to have an anomalously long nanosecond-scale lifetime, which could allow laser spectroscopy to be carried out(17). Its atomic structure is unique owing to the absence of hyperfine interactions(18,19) between the spin-0 pi(-) and the He-4 nucleus. Here we synthesize pi He-4(+) in a superfluid-helium target and excite the transition (n, l) = (17, 16) -> (17, 15) of the pi(-)-occupied pi He-4(+) orbital at a near-infrared resonance frequency of 183,760 gigahertz. The laser initiates electromagnetic cascade processes that end with the nucleus absorbing the pi(-) and undergoing fission(20,21). The detection of emerging neutron, proton and deuteron fragments signals the laser-induced resonance in the atom, thereby confirming the presence of pi He-4(+). This work enables the use of the experimental techniques of quantum optics to study a meson.


Long-lived pionic helium atoms (composed of a helium-4 nucleus, an electron and a negatively charged pion) are synthesized in a superfluid-helium target, as confirmed by laser spectroscopy involving the pion-occupied orbitals.


  
Fundamental bounds on the fidelity of sensory cortical coding 期刊论文
NATURE, 2020
作者:  Rempel, S.;  Gati, C.;  Nijland, M.;  Thangaratnarajah, C.;  Karyolaimos, A.;  de Gier, J. W.;  Guskov, A.;  Slotboom, D. J.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

How the brain processes information accurately despite stochastic neural activity is a longstanding question(1). For instance, perception is fundamentally limited by the information that the brain can extract from the noisy dynamics of sensory neurons. Seminal experiments(2,3) suggest that correlated noise in sensory cortical neural ensembles is what limits their coding accuracy(4-6), although how correlated noise affects neural codes remains debated(7-11). Recent theoretical work proposes that how a neural ensemble'  s sensory tuning properties relate statistically to its correlated noise patterns is a greater determinant of coding accuracy than is absolute noise strength(12-14). However, without simultaneous recordings from thousands of cortical neurons with shared sensory inputs, it is unknown whether correlated noise limits coding fidelity. Here we present a 16-beam, two-photon microscope to monitor activity across the mouse primary visual cortex, along with analyses to quantify the information conveyed by large neural ensembles. We found that, in the visual cortex, correlated noise constrained signalling for ensembles with 800-1,300 neurons. Several noise components of the ensemble dynamics grew proportionally to the ensemble size and the encoded visual signals, revealing the predicted information-limiting correlations(12-14). Notably, visual signals were perpendicular to the largest noise mode, which therefore did not limit coding fidelity. The information-limiting noise modes were approximately ten times smaller and concordant with mouse visual acuity(15). Therefore, cortical design principles appear to enhance coding accuracy by restricting around 90% of noise fluctuations to modes that do not limit signalling fidelity, whereas much weaker correlated noise modes inherently bound sensory discrimination.


A microscopy system that enables simultaneous recording from hundreds of neurons in the mouse visual cortex reveals that the brain enhances its coding capacity by representing visual inputs in dimensions perpendicular to correlated noise.


  
A neural circuit mechanism for mechanosensory feedback control of ingestion 期刊论文
NATURE, 2020, 580 (7803) : 376-+
作者:  Field, Daniel J.;  Benito, Juan;  Chen, Albert;  Jagt, John W. M.;  Ksepka, Daniel T.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Mechanosensory feedback from the digestive tract to the brain is critical for limiting excessive food and water intake, but the underlying gut-brain communication pathways and mechanisms remain poorly understood(1-12). Here we show that, in mice, neurons in the parabrachial nucleus that express the prodynorphin gene (hereafter, PBPdyn neurons) monitor the intake of both fluids and solids, using mechanosensory signals that arise from the upper digestive tract. Most individual PBPdyn neurons are activated by ingestion as well as the stimulation of the mouth and stomach, which indicates the representation of integrated sensory signals across distinct parts of the digestive tract. PBPdyn neurons are anatomically connected to the digestive periphery via cranial and spinal pathways  we show that, among these pathways, the vagus nerve conveys stomach-distension signals to PBPdyn neurons. Upon receipt of these signals, these neurons produce aversive and sustained appetite-suppressing signals, which discourages the initiation of feeding and drinking (fully recapitulating the symptoms of gastric distension) in part via signalling to the paraventricular hypothalamus. By contrast, inhibiting the same population of PBPdyn neurons induces overconsumption only if a drive for ingestion exists, which confirms that these neurons mediate negative feedback signalling. Our findings reveal a neural mechanism that underlies the mechanosensory monitoring of ingestion and negative feedback control of intake behaviours upon distension of the digestive tract.


  
Metabolites released from apoptotic cells act as tissue messengers 期刊论文
NATURE, 2020
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Caspase-dependent apoptosis accounts for approximately 90% of homeostatic cell turnover in the body(1), and regulates inflammation, cell proliferation, and tissue regeneration(2-4). How apoptotic cells mediate such diverse effects is not fully understood. Here we profiled the apoptotic metabolite secretome and determined its effects on the tissue neighbourhood. We show that apoptotic lymphocytes and macrophages release specific metabolites, while retaining their membrane integrity. A subset of these metabolites is also shared across different primary cells and cell lines after the induction of apoptosis by different stimuli. Mechanistically, the apoptotic metabolite secretome is not simply due to passive emptying of cellular contents and instead is a regulated process. Caspase-mediated opening of pannexin 1 channels at the plasma membrane facilitated the release of a select subset of metabolites. In addition, certain metabolic pathways continued to remain active during apoptosis, with the release of only select metabolites from a given pathway. Functionally, the apoptotic metabolite secretome induced specific gene programs in healthy neighbouring cells, including suppression of inflammation, cell proliferation, and wound healing. Furthermore, a cocktail of apoptotic metabolites reduced disease severity in mouse models of inflammatory arthritis and lung-graft rejection. These data advance the concept that apoptotic cells are not inert cells waiting for removal, but instead release metabolites as '  good-bye'  signals to actively modulate outcomes in tissues.


Apoptotic cells communicate with neighbouring cells by the regulated release of specific metabolites, and a cocktail of select apoptotic metabolites reduces disease severity in mouse models of inflammatory arthritis and lung transplant rejection.


  
Recurrent interactions in local cortical circuits 期刊论文
NATURE, 2020, 579 (7798) : 256-+
作者:  Liu, Yang;  Nguyen, Phong T.;  Wang, Xun;  Zhao, Yuting;  Meacham, Corbin E.;  Zou, Zhongju;  Bordieanu, Bogdan;  Johanns, Manuel;  Vertommen, Didier;  Wijshake, Tobias;  May, Herman;  Xiao, Guanghua;  Shoji-Kawata, Sanae;  Rider, Mark H.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations(1-4). Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average(5,6). Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes(5-7), and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually(8). Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity(7) and photoablating(9,10) neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10-20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.


Computational modelling, imaging and single-cell ablation in layer 2/3 of the mouse vibrissal somatosensory cortex reveals that recurrent activity in cortical neurons can drive input-specific amplification during behaviour.