GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
General synthesis of two-dimensional van der Waals heterostructure arrays 期刊论文
NATURE, 2020: 368-+
作者:  Bloch, Joel S.;  Pesciullesi, Giorgio;  Boilevin, Jeremy;  Nosol, Kamil;  Irobalieva, Rossitza N.;  Darbre, Tamis;  Aebi, Markus;  Kossiakoff, Anthony A.;  Reymond, Jean-Louis;  Locher, Kaspar P.
收藏  |  浏览/下载:96/0  |  提交时间:2020/07/03

Two-dimensional van der Waals heterostructures (vdWHs) have attracted considerable interest(1-4). However, most vdWHs reported so far are created by an arduous micromechanical exfoliation and manual restacking process(5), which-although versatile for proof-of-concept demonstrations(6-16) and fundamental studies(17-30)-is clearly not scalable for practical technologies. Here we report a general synthetic strategy for two-dimensional vdWH arrays between metallic transition-metal dichalcogenides (m-TMDs) and semiconducting TMDs (s-TMDs). By selectively patterning nucleation sites on monolayer or bilayer s-TMDs, we precisely control the nucleation and growth of diverse m-TMDs with designable periodic arrangements and tunable lateral dimensions at the predesignated spatial locations, producing a series of vdWH arrays, including VSe2/WSe2, NiTe2/WSe2, CoTe2/WSe2, NbTe2/WSe2, VS2/WSe2, VSe2/MoS2 and VSe2/WS2. Systematic scanning transmission electron microscopy studies reveal nearly ideal vdW interfaces with widely tunable moire superlattices. With the atomically clean vdW interface, we further show that the m-TMDs function as highly reliable synthetic vdW contacts for the underlying WSe2 with excellent device performance and yield, delivering a high ON-current density of up to 900 microamperes per micrometre in bilayer WSe2 transistors. This general synthesis of diverse two-dimensional vdWH arrays provides a versatile material platform for exploring exotic physics and promises a scalable pathway to high-performance devices.


A general strategy for the synthesis of two-dimensional van der Waals heterostructure arrays is used to produce high-performance electronic devices, showing the potential of this scalable approach for practical technologies.


  
Chiral superconductivity in heavy-fermion metal UTe2 期刊论文
NATURE, 2020, 579 (7800) : 523-527
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:87/0  |  提交时间:2020/07/03

Scanning tunnelling microscopy and spectroscopy measurements show chiral edge states inside the superconducting gap of the heavy-fermion superconductor UTe2, indicating the presence of chiral spin-triplet superconductivity.


Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction(1). An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes(2,3). However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity(4). Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin(5). We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.


  
Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites 期刊论文
NATURE, 2020, 580 (7803) : 360-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:52/0  |  提交时间:2020/07/03

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices(1,2). This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively(3)) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects(4). Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance(5), perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance(6). The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions(7) and with local strain(8), both of which make devices less stable(9). Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process(10,11), we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.


  
Analysis and Optical Modeling of Individual Heterogeneous Asian Dust Particles Collected at Mauna Loa Observatory 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (5) : 2702-2723
作者:  Conny, Joseph M.;  Willis, Robert D.;  Ortiz-Montalvo, Diana L.
收藏  |  浏览/下载:13/0  |  提交时间:2019/11/26
atmospheric aerosol  mineral dust  scanning electron microscopy  focused ion-beam tomography  light scattering  discrete dipole approximation