GSTDTAP

浏览/检索结果: 共62条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
小行星物质组成:揭示太阳系起源的重要线索 快报文章
地球科学快报,2024年第14期
作者:  王晓晨
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:525/0  |  提交时间:2024/07/25
origin  Planet  Rock composition  
认识岩石渗透性与微震之间的联系将有助于地热能开发与利用 快报文章
地球科学快报,2024年第8期
作者:  王立伟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:571/0  |  提交时间:2024/04/25
Rock permeability  microquakes  geothermal energy  
科学家首次实现对岩石风化增强技术所导致的碳泄漏的量化评估 快报文章
地球科学快报,2023年第08期
作者:  张树良
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:545/0  |  提交时间:2023/04/25
Quantifying carbon leakage  enhanced rock weathering  carbon dioxide removal  negative emissions technologies  
美研究团队发现地球构造板块下隐藏的熔岩层 快报文章
地球科学快报,2023年第4期
作者:  刘学
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:627/0  |  提交时间:2023/02/24
Asthenospheric  molten rock layer  
科学家首次证实地球氧同位素比率取决于地球内部热流 快报文章
地球科学快报,2023年第1期
作者:  张树良
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:585/0  |  提交时间:2023/01/10
oxygen isotope ratios  Earth's thermal evolution  heat flow  sedimentary rock  chert  
太平洋板块底部发现更软的熔融岩层 快报文章
地球科学快报,2022年第19期
作者:  王晓晨
Microsoft Word(30Kb)  |  收藏  |  浏览/下载:641/0  |  提交时间:2022/10/10
Pacific plate  Molten rock  
新装置揭示二氧化碳地质封存时岩石的微观反应 快报文章
地球科学快报,2022年第16期
作者:  刘文浩
Microsoft Word(22Kb)  |  收藏  |  浏览/下载:690/0  |  提交时间:2022/08/25
CCUS  Rock reaction  Stanford University  
新技术基于便携式拉曼光谱仪实现石灰岩快速分类 快报文章
地球科学快报,2022年第10期
作者:  刘文浩
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:712/0  |  提交时间:2022/05/24
Limestone  Raman spectroscopy  Rock classification  Mineral particle size  
新研究证实超基性岩的风化促进了地球大氧化事件 快报文章
地球科学快报,2022年第03期
作者:  刘文浩
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:684/0  |  提交时间:2022/02/10
GEO  Ultrabasic rock  Weathering  
Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial 期刊论文
NATURE, 2020, 583 (7817) : 554-+
作者:  T. Blackburn;  G. H. Edwards;  S. Tulaczyk;  M. Scudder;  G. Piccione;  B. Hallet;  N. McLean;  J. C. Zachos;  B. Cheney;  J. T. Babbe
收藏  |  浏览/下载:22/0  |  提交时间:2020/08/09

Uranium isotopes in subglacial precipitates from the Wilkes Basin of the East Antarctic Ice Sheet reveal ice retreat during a warm Pleistocene interglacial period about 400,000 years ago.


Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth'  s past interglacial warm periods(1-3). About 400,000 years ago, during the interglacial period known as Marine Isotopic Stage 11 (MIS11), the global temperature was 1 to 2 degrees Celsius greater(2)and sea level was 6 to 13 metres higher(1,3). Sea level estimates in excess of about 10 metres, however, have been discounted because these require a contribution from the East Antarctic Ice Sheet(3), which has been argued to have remained stable for millions of years before and includes MIS11(4,5). Here we show how the evolution of(234)U enrichment within the subglacial waters of East Antarctica recorded the ice sheet'  s response to MIS11 warming. Within the Wilkes Basin, subglacial chemical precipitates of opal and calcite record accumulation of(234)U (the product of rock-water contact within an isolated subglacial reservoir) up to 20 times higher than that found in marine waters. The timescales of(234)U enrichment place the inception of this reservoir at MIS11. Informed by the(234)U cycling observed in the Laurentide Ice Sheet, where(234)U accumulated during periods of ice stability(6)and was flushed to global oceans in response to deglaciation(7), we interpret our East Antarctic dataset to represent ice loss within the Wilkes Basin at MIS11. The(234)U accumulation within the Wilkes Basin is also observed in the McMurdo Dry Valleys brines(8-10), indicating(11)that the brine originated beneath the adjacent East Antarctic Ice Sheet. The marine origin of brine salts(10)and bacteria(12)implies that MIS11 ice loss was coupled with marine flooding. Collectively, these data indicate that during one of the warmest Pleistocene interglacials, the ice sheet margin at the Wilkes Basin retreated to near the precipitate location, about 700 kilometres inland from the current position of the ice margin, which-assuming current ice volumes-would have contributed about 3 to 4 metres(13)to global sea levels.