GSTDTAP

浏览/检索结果: 共26条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
开创性的可持续水资源管理数字工具获得全球推动 快报文章
资源环境快报,2022年第17期
作者:  魏艳红
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:697/1  |  提交时间:2022/09/16
FAO  Sustainable Water Management  Near Real-time Data  
UNEP与IQAir公司联合推出新的实时空气污染暴露计算器 快报文章
资源环境快报,2021年第18期
作者:  牛艺博
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:694/0  |  提交时间:2021/09/30
UNEP  IQAir  real-time  air pollution  exposure calculator of air quality monitoring  
2020年上半年全球二氧化碳排放量较2019年同期减少8.8% 快报文章
气候变化快报,2020年第21期
作者:  董利苹
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:400/0  |  提交时间:2020/11/05
Global CO2 Emissions  Near-real-time Monitoring  Effects of the COVID-19 Pandemic  
Real-Time Earthquake Location Based on the Kalman Filter Formulation 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
作者:  Chen, Yukuan;  Zhang, Haijiang;  Eaton, David W.
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
Kalman filter  real-time earthquake location  earthquake early warning  
Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform 期刊论文
NATURE, 2020
作者:  Touat, Mehdi;  Li, Yvonne Y.;  Boynton, Adam N.;  Spurr, Liam F.;  Iorgulescu, J. Bryan;  Bohrson, Craig L.;  Cortes-Ciriano, Isidro;  Birzu, Cristina;  Geduldig, Jack E.;  Pelton, Kristine;  Lim-Fat, Mary Jane;  Pal, Sangita;  Ferrer-Luna, Ruben;  Ramkissoon, Shakti H.;  Dubois, Frank;  Bellamy, Charlotte;  Currimjee, Naomi;  Bonardi, Juliana;  Qian Kenin;  Ho, Patricia;  Malinowski, Seth;  Taquet, Leon;  Jones, Robert E.;  Shetty, Aniket;  Chow, Kin-Hoe;  Sharaf, Radwa;  Pavlick, Dean;  Albacker, Lee A.;  Younan, Nadia;  Baldini, Capucine;  Verreault, Maite;  Giry, Marine;  Guillerm, Erell;  Ammari, Samy;  Beuvon, Frederic;  Mokhtari, Karima;  Alentorn, Agusti;  Dehais, Caroline;  Houillier, Caroline;  Laigle-Donadey, Florence;  Psimaras, Dimitri;  Lee, Eudocia Q.;  Nayak, Lakshmi;  McFaline-Figueroa, J. Ricardo;  Carpentier, Alexandre;  Cornu, Philippe;  Capelle, Laurent;  Mathon, Bertrand;  Barnholtz-Sloan, Jill S.;  Chakravarti, Arnab;  Bi, Wenya Linda;  Chiocca, E. Antonio;  Fehnel, Katie Pricola;  Alexandrescu, Sanda;  Chi, Susan N.;  Haas-Kogan, Daphne;  Batchelor, Tracy T.;  Frampton, Garrett M.;  Alexander, Brian M.;  Huang, Raymond Y.;  Ligon, Azra H.;  Coulet, Florence;  Delattre, Jean-Yves;  Hoang-Xuan, Khe;  Meredith, David M.;  Santagata, Sandro;  Duval, Alex;  Sanson, Marc;  Cherniack, Andrew D.;  Wen, Patrick Y.;  Reardon, David A.;  Marabelle, Aurelien;  Park, Peter J.;  Idbaih, Ahmed;  Beroukhim, Rameen;  Bandopadhayay, Pratiti;  Bielle, Franck;  Ligon, Keith L.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate inEscherichia coliowing to the size and occasional instability of the genome(1-3). Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of theCoronaviridae,FlaviviridaeandPneumoviridaefamilies. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step inSaccharomyces cerevisiaeusing transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(4), which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


A yeast-based synthetic genomics platform is used to reconstruct and characterize large RNA viruses from synthetic DNA fragments  this technique will facilitate the rapid analysis of RNA viruses, such as SARS-CoV-2, during an outbreak.


  
CARBON IN THE TIME OF COVID-19 期刊论文
NATURE, 2020, 582 (7811) : 158-159
作者:  Henderson, Caspar
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Near-real-time data on carbon emissions reveal the sectors, countries and events that had the most impact, but it is unclear how long the dip will last.


Near-real-time data on carbon emissions reveal the sectors, countries and events that had the most impact, but it is unclear how long the dip will last.


  
Video-based AI for beat-to-beat assessment of cardiac function 期刊论文
NATURE, 2020, 580 (7802) : 252-+
作者:  Pleguezuelos-Manzano, Cayetano;  Puschhof, Jens;  Huber, Axel Rosendahl;  van Hoeck, Arne;  Wood, Henry M.;  Nomburg, Jason;  Gurjao, Carino;  Manders, Freek;  Dalmasso, Guillaume;  Stege, Paul B.;  Paganelli, Fernanda L.;  Geurts, Maarten H.;  Beumer, Joep;  Mizutani, Tomohiro;  Miao, Yi;  van der Linden, Reinier;  van der Elst, Stefan;  Garcia, K. Christopher;  Top, Janetta;  Willems, Rob J. L.;  Giannakis, Marios;  Bonnet, Richard;  Quirke, Phil;  Meyerson, Matthew;  Cuppen, Edwin;  van Boxtel, Ruben;  Clevers, Hans
收藏  |  浏览/下载:117/0  |  提交时间:2020/07/03

A video-based deep learning algorithm-EchoNet-Dynamic-accurately identifies subtle changes in ejection fraction and classifies heart failure with reduced ejection fraction using information from multiple cardiac cycles.


Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease(1), screening for cardiotoxicity(2) and decisions regarding the clinical management of patients with a critical illness(3). However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training(4,5). Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.


  
In situ NMR metrology reveals reaction mechanisms in redox flow batteries 期刊论文
NATURE, 2020, 579 (7798) : 224-+
作者:  Ma, Jianfei;  You, Xin;  Sun, Shan;  Wang, Xiaoxiao;  Qin, Song;  Sui, Sen-Fang
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption(1). Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density(2,3). Thus, fundamental insight at the molecular level is required to improve performance(4,5). Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4 '  -((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H-1 NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H-1 NMR shift of the water resonance) and the line broadening of the H-1 shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


  
Processive extrusion of polypeptide loops by a Hsp100 disaggregase 期刊论文
NATURE, 2020, 578 (7794) : 317-+
作者:  Zhao, Peishen;  Liang, Yi-Lynn;  Belousoff, Matthew J.;  Deganutti, Giuseppe;  Fletcher, Madeleine M.;  Willard, Francis S.;  Bell, Michael G.;  Christe, Michael E.;  Sloop, Kyle W.;  Inoue, Asuka;  Truong, Tin T.;  Clydesdale, Lachlan;  Furness, Sebastian G. B.;  Christopoulos, Arthur;  Wang, Ming-Wei;  Miller, Laurence J.;  Reynolds, Christopher A.;  Danev, Radostin;  Sexton, Patrick M.;  Wootten, Denise
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The ability to reverse protein aggregation is vital to cells(1,2). Hsp100 disaggregases such as ClpB and Hsp104 are proposed to catalyse this reaction by translocating polypeptide loops through their central pore(3,4). This model of disaggregation is appealing, as it could explain how polypeptides entangled within aggregates can be extracted and subsequently refolded with the assistance of Hsp70(4,5). However, the model is also controversial, as the necessary motor activity has not been identified(6-8) and recent findings indicate non-processive mechanisms such as entropic pulling or Brownian ratcheting(9,10). How loop formation would be accomplished is also obscure. Indeed, cryo-electron microscopy studies consistently show single polypeptide strands in the Hsp100 pore(11,12). Here, by following individual ClpB-substrate complexes in real time, we unambiguously demonstrate processive translocation of looped polypeptides. We integrate optical tweezers with fluorescent-particle tracking to show that ClpB translocates both arms of the loop simultaneously and switches to single-arm translocation when encountering obstacles. ClpB is notably powerful and rapid  it exerts forces of more than 50 pN at speeds of more than 500 residues per second in bursts of up to 28 residues. Remarkably, substrates refold while exiting the pore, analogous to co-translational folding. Our findings have implications for protein-processing phenomena including ubiquitin-mediated remodelling by Cdc48 (or its mammalian orthologue p97)(13) and degradation by the 26S proteasome(14).


A combination of optical tweezers and fluorescent-particle tracking is used to dissect the dynamics of the Hsp100 disaggregase ClpB, and show that the processive extrusion of polypeptide loops is the mechanistic basis of its activity.


  
Long-term cyclic persistence in an experimental predator-prey system 期刊论文
NATURE, 2020, 577 (7789) : 226-+
作者:  Blasius, Bernd;  Rudolf, Lars;  Weithoff, Guntram;  Gaedke, Ursula;  Fussmann, Gregor F.
收藏  |  浏览/下载:11/0  |  提交时间:2020/04/16

Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey(1-4). However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods(5-8) and experimental studies indicate that oscillations may be short-lived without external stabilizing factors(9-19). Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events.