GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Collisional cooling of ultracold molecules 期刊论文
NATURE, 2020, 580 (7802) : 197-+
作者:  Wang, Qinyang;  Wang, Yupeng;  Ding, Jingjin;  Wang, Chunhong;  Zhou, Xuehan;  Gao, Wenqing;  Huang, Huanwei;  Shao, Feng;  Liu, Zhibo
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Since the original work on Bose-Einstein condensation(1,2), the use of quantum degenerate gases of atoms has enabled the quantum emulation of important systems in condensed matter and nuclear physics, as well as the study of many-body states that have no analogue in other fields of physics(3). Ultracold molecules in the micro- and nanokelvin regimes are expected to bring powerful capabilities to quantum emulation(4) and quantum computing(5), owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry(6). Quantum gases of ultracold atoms can be created using collision-based cooling schemes such as evaporative cooling, but thermalization and collisional cooling have not yet been realized for ultracold molecules. Other techniques, such as the use of supersonic jets and cryogenic buffer gases, have reached temperatures limited to above 10 millikelvin(7,8). Here we show cooling of NaLi molecules to micro- and nanokelvin temperatures through collisions with ultracold Na atoms, with both molecules and atoms prepared in their stretched hyperfine spin states. We find a lower bound on the ratio of elastic to inelastic molecule-atom collisions that is greater than 50-large enough to support sustained collisional cooling. By employing two stages of evaporation, we increase the phase-space density of the molecules by a factor of 20, achieving temperatures as low as 220 nanokelvin. The favourable collisional properties of the Na-NaLi system could enable the creation of deeply quantum degenerate dipolar molecules and raises the possibility of using stretched spin states in the cooling of other molecules.


NaLi molecules are cooled to micro- and nanokelvin temperatures through collisions with ultracold Na atoms by using molecules and atoms in stretched hyperfine spin states and applying two evaporation stages.


  
Demonstration of cooling by the Muon Ionization Cooling Experiment 期刊论文
NATURE, 2020, 578 (7793) : 53-+
作者:  Zheng, Wen;  Zhao, Wenjing;  Wu, Meng;  Song, Xinyang;  Caro, Florence;  Sun, Ximei;  Gazzaniga, Francesca;  Stefanetti, Giuseppe;  Oh, Sungwhan;  Mekalanos, John J.;  Kasper, Dennis L.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such '  tertiary'  beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton-antilepton collisions at extremely high energies and provide well characterized neutrino beams(1-6). Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness(7,8). Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect(9-11). The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced wfootprint(6).


  
A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (16) : 8035-8043
作者:  Xiang, Zheng;  Tu, Weichao;  Ni, Binbin;  Henderson, M. G.;  Cao, Xing
收藏  |  浏览/下载:3/0  |  提交时间:2019/04/09
radiation belt dropout  wave particle interaction  EMIC wave  phase space density  magnetopause shadowing  radial diffusion  
What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (11) : 5253-5259
作者:  Boyd, A. J.;  Turner, D. L.;  Reeves, G. D.;  Spence, H. E.;  Baker, D. N.;  Blake, J. B.
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09
Radiation Belt  Phase Space Density  Local Acceleration  Van Allen Probes  THEMIS