GSTDTAP

浏览/检索结果: 共37条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
欧美研究证实根际正激发效应加速多年冻土碳释放 快报文章
资源环境快报,2025年第8期
作者:  裴惠娟
Microsoft Word(31Kb)  |  收藏  |  浏览/下载:449/0  |  提交时间:2025/04/30
Rhizosphere Priming  Carbon Release  Permafrost Soil  
日美研究发现气候变化改变高纬度地区生态系统的碳收支 快报文章
气候变化快报,2024年第22期
作者:  裴惠娟
Microsoft Word(28Kb)  |  收藏  |  浏览/下载:486/0  |  提交时间:2024/11/19
Permafrost  Forest  Carbon Sink  
美研究称北半球多年冻土生态系统即将成为碳源 快报文章
气候变化快报,2024年第16期
作者:  董利苹
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:507/0  |  提交时间:2024/08/20
Northern Permafrost Ecosystems  Respiratory Losses  Decadal Increases in Carbon Uptake Offset  
加拿大西部泥炭碳因多年冻土融化而大量流失 快报文章
气候变化快报,2023年第17期
作者:  秦冰雪
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:515/0  |  提交时间:2023/09/05
Permafrost  Carbon Loss  Canada  
多年冻土区的河流碳通量将随着冻土的融化而增加 快报文章
气候变化快报,2022年第18期
作者:  秦冰雪
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:713/0  |  提交时间:2022/09/20
Fluvial Carbon Flux  Permafrost  
气候变化将导致多年冻土释放395亿吨碳 快报文章
资源环境快报,2022年第06期
作者:  董利苹
Microsoft Word(23Kb)  |  收藏  |  浏览/下载:880/0  |  提交时间:2022/03/31
Permafrost  Peat Carbon Approaching  Climatic Tipping Point  
新研究称多年冻土在40万年以前发生大范围融化 快报文章
地球科学快报,2021年第9期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:430/0  |  提交时间:2021/05/08
permafrost  carbon cycle  Canadian speleothems  
Warming and monsoonal climate lead to large export of millennial-aged carbon from permafrost catchments of the Qinghai-Tibet Plateau 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Song, Chunlin;  Wang, Genxu;  Haghipour, Negar;  Raymond, Peter A.
收藏  |  浏览/下载:22/0  |  提交时间:2020/08/18
riverine carbon export  radiocarbon  stable carbon isotope  permafrost  Qinghai-Tibet Plateau river  climate warming  
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:56/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.


  
Increased deep soil respiration detected despite reduced overall respiration in permafrost peat plateaus following wildfire 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (12)
作者:  Gibson, Carolyn M.;  Estop-Aragones, Cristian;  Flannigan, Mike;  Thompson, Dan K.;  Olefeldt, David
收藏  |  浏览/下载:25/0  |  提交时间:2020/02/17
wildfire  soil organic carbon  soil respiration  permafrost peatlands