GSTDTAP

浏览/检索结果: 共8条,第1-8条 帮助

已选(0)清除 条数/页:   排序方式:
Potential for large-scale CO2 removal via enhanced rock weathering with croplands 期刊论文
NATURE, 2020, 583 (7815) : 242-+
作者:  David J. Beerling;  Euripides P. Kantzas;  Mark R. Lomas;  Peter Wade;  Rafael M. Eufrasio;  Phil Renforth;  Binoy Sarkar;  M. Grace Andrews;  Rachael H. James;  Christopher R. Pearce;  Jean-Francois Mercure;  Hector Pollitt;  Philip B. Holden;  Neil R. Edwards;  Madhu Khanna;  Lenny Koh;  Shaun Quegan;  Nick F. Pidgeon;  Ivan A. Janssens;  James Hansen;  Steven A. Banwart
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/14

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change(1). ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification(2-4). Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius(5). China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


  
International evaluation of an AI system for breast cancer screening 期刊论文
NATURE, 2020, 577 (7788) : 89-+
作者:  McKinney, Scott Mayer;  Sieniek, Marcin;  Godbole, Varun;  Godwin, Jonathan;  Antropova, Natasha;  Ashrafian, Hutan;  Back, Trevor;  Chesus, Mary;  Corrado, Greg C.;  Darzi, Ara;  Etemadi, Mozziyar;  Garcia-Vicente, Florencia;  Gilbert, Fiona J.;  Halling-Brown, Mark;  Hassabis, Demis;  Jansen, Sunny;  Karthikesalingam, Alan;  Kelly, Christopher J.;  King, Dominic;  Ledsam, Joseph R.;  Melnick, David;  Mostofi, Hormuz;  Peng, Lily;  Reicher, Joshua Jay;  Romera-Paredes, Bernardino;  Sidebottom, Richard;  Suleyman, Mustafa;  Tse, Daniel;  Young, Kenneth C.;  De Fauw, Jeffrey;  Shetty, Shravya
收藏  |  浏览/下载:66/0  |  提交时间:2020/07/03

Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful(1). Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives(2). Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.


  
Video-based AI for beat-to-beat assessment of cardiac function 期刊论文
NATURE, 2020, 580 (7802) : 252-+
作者:  Pleguezuelos-Manzano, Cayetano;  Puschhof, Jens;  Huber, Axel Rosendahl;  van Hoeck, Arne;  Wood, Henry M.;  Nomburg, Jason;  Gurjao, Carino;  Manders, Freek;  Dalmasso, Guillaume;  Stege, Paul B.;  Paganelli, Fernanda L.;  Geurts, Maarten H.;  Beumer, Joep;  Mizutani, Tomohiro;  Miao, Yi;  van der Linden, Reinier;  van der Elst, Stefan;  Garcia, K. Christopher;  Top, Janetta;  Willems, Rob J. L.;  Giannakis, Marios;  Bonnet, Richard;  Quirke, Phil;  Meyerson, Matthew;  Cuppen, Edwin;  van Boxtel, Ruben;  Clevers, Hans
收藏  |  浏览/下载:139/0  |  提交时间:2020/07/03

A video-based deep learning algorithm-EchoNet-Dynamic-accurately identifies subtle changes in ejection fraction and classifies heart failure with reduced ejection fraction using information from multiple cardiac cycles.


Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease(1), screening for cardiotoxicity(2) and decisions regarding the clinical management of patients with a critical illness(3). However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training(4,5). Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.


  
High-Impact Extratropical Cyclones along the Northeast Coast of the United States in a Long Coupled Climate Model Simulation 期刊论文
JOURNAL OF CLIMATE, 2019, 32 (7) : 2131-2143
作者:  Catalano, Arielle J.;  Broccoli, Anthony J.;  Kapnick, Sarah B.;  Janoski, Tyler P.
收藏  |  浏览/下载:16/0  |  提交时间:2019/11/26
Atmospheric circulation  Extratropical cyclones  Risk assessment  General circulation models  Model evaluation  performance  
Copula-Based Modeling of Flood Control Reservoirs 期刊论文
WATER RESOURCES RESEARCH, 2017, 53 (11)
作者:  Balistrocchi, M.;  Orlandini, S.;  Ranzi, R.;  Bacchi, B.
收藏  |  浏览/下载:12/0  |  提交时间:2019/04/09
flood control reservoirs  bivariate analysis  copula functions  return period  flood risk analysis  reservoir performance assessment  
Comparing methods for assessing the effectiveness of subnational REDD plus initiatives 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (7)
作者:  Bos, Astrid B.;  Duchelle, Amy E.;  Angelsen, Arild;  Avitabile, Valerio;  De Sy, Veronique;  Herold, Martin;  Joseph, Shijo;  de Sassi, Claudio;  Sills, Erin O.;  Sunderlin, William D.;  Wunder, Sven
收藏  |  浏览/下载:23/0  |  提交时间:2019/04/09
deforestation  climate  forest change  land cover  monitoring  performance assessment  REDD  
Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015 科技报告
来源:US Department of Energy (DOE). 出版年: 2016
作者:  French, Sean B.;  Stauffer, Philip H.;  Birdsell, Kay H.
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/05
Environmental Protection  Area G Performance Assessment  
West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Rendall, John D.;  Steiner, Alison F.;  Pendl, Michael P.
收藏  |  浏览/下载:27/0  |  提交时间:2019/04/05
West Valley Demonstration Project  WVDP  Annual Site Environmental Report  ASER  Calendar Year 2013  CH2M HILL • B&W West Valley  LLC  DE-EM0001529  Public Health and Safety and the Environment Are Protected  Airborne and Waterborne Releases to the MEOSI  Climate Change  DOE/NYSERDA Consent Decree  Dose Assessment  Dose to Biota  Drinking Water  Environmental Characterization Support Services  Environmental Compliance  Environmental Management System: EMS  Environmental Monitoring  Groundwater Protection Program  High-Level Waste (HLW) Canister Interim Storage System  HLW canister storage pad  National Emissions Standards for Hazardous Air Pollutants  NESHAP  National Environmental Policy Act  NEPA  North Plateau Full-Scale Permeable Treatment Wall  PTW  Nuclear Regulatory Commission (NRC)-Licensed Disposal Area  NDA  Performance Indicators  Phase 1 Decommissioning and Facility Disposition Contract  Phase 1 Studies  Quality Assurance  Record of Decision  ROD  Resource Conservation and Recovery Act  RCRA  Safety Success  Site Sustainability Plan  SSP  State Pollutant Discharge Elimination System (SPDES) Permit Noncompliance  SPDES  Tank and Vault Drying System  T&VDS  Vertical Storage Casks  VSC  Waste Minimization and Pollution Prevention  Waste Tank Farm  WTF  Waste-Incidental-to-Reprocessing  WIR