GSTDTAP

浏览/检索结果: 共86条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美加等5国宣布将联合投资打造安全可靠的全球核能供应链 快报文章
地球科学快报,2023年第24期
作者:  王立伟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:462/0  |  提交时间:2023/12/25
COP28  Nuclear Energy Supply Chain  
英国发布能源安全与净零增长计划 快报文章
气候变化快报,2023年第08期
作者:  王田宇 刘燕飞
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:534/0  |  提交时间:2023/04/20
Carbon capture  Nuclear energy  Hydrogen economy  Energy efficiency  Green finance  
牛津能源研究所指出核能在中国能源政策中发挥了关键作用 快报文章
气候变化快报,2023年第3期
作者:  刘莉娜
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:518/0  |  提交时间:2023/02/05
Nuclear Power  China  Energy Policy  
英国发布先进核燃料循环路线图 快报文章
气候变化快报,2021年第14期
作者:  廖琴
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:457/0  |  提交时间:2021/07/20
Net Zero  Advacned Nuclear Fuel  Clean Energy  
DOE投资6500万美元开展核能技术与基础设施研发 快报文章
地球科学快报,2020年第13期
作者:  刘文浩
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:389/0  |  提交时间:2020/07/09
nuclear energy  infrastructure  
Microbial bile acid metabolites modulate gut ROR gamma(+) regulatory T cell homeostasis 期刊论文
NATURE, 2020, 577 (7790) : 410-+
作者:  Bhargava, Manjul
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules(1). Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins(2). Some BAs (approximately 5%) escape into the colon, where gut commensal bacteria convert them into various intestinal BAs2 that are important hormones that regulate host cholesterol metabolism and energy balance via several nuclear receptors and/or G-protein-coupled receptors(3,4). These receptors have pivotal roles in shaping host innate immune responses(1,5). However, the effect of this host-microorganism biliary network on the adaptive immune system remains poorly characterized. Here we report that both dietary and microbial factors influence the composition of the gut BA pool and modulate an important population of colonic FOXP3(+) regulatory T (T-reg) cells expressing the transcription factor ROR gamma. Genetic abolition of BA metabolic pathways in individual gut symbionts significantly decreases this T-reg cell population. Restoration of the intestinal BA pool increases colonic ROR gamma(+) T-reg cell counts and ameliorates host susceptibility to inflammatory colitis via BA nuclear receptors. Thus, a pan-genomic biliary network interaction between hosts and their bacterial symbionts can control host immunological homeostasis via the resulting metabolites.


  
Detection of metastable electronic states by Penning trap mass spectrometry 期刊论文
NATURE, 2020, 581 (7806) : 42-+
作者:  Rauch, Jennifer N.;  Luna, Gabriel;  Guzman, Elmer;  Audouard, Morgane;  Challis, Collin;  Sibih, Youssef E.;  Leshuk, Carolina;  Hernandez, Israel;  Wegmann, Susanne;  Hyman, Bradley T.;  Gradinaru, Viviana;  Kampmann, Martin;  Kosik, Kenneth S.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

State-of-the-art optical clocks(1) achieve precisions of 10(-18) or better using ensembles of atoms in optical lattices(2,3) or individual ions in radio-frequency traps(4,5). Promising candidates for use in atomic clocks are highly charged ions(6) (HCIs) and nuclear transitions(7), which are largely insensitive to external perturbations and reach wavelengths beyond the optical range(8) that are accessible to frequency combs(9). However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10(-11)-an improvement by a factor of ten compared with previous measurements(10,11). With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 x 10(16) hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 x 10(-8) hertz and one of the highest electronic quality factors (10(24)) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions(8,12) in HCIs, which are required for precision studies of fundamental physics(6).


Penning trap mass spectrometry is used to measure the electronic transition energy from a long-lived metastable state to the ground state in highly charged rhenium ions with a precision of 10(-11).


  
Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe 期刊论文
ECOLOGICAL ECONOMICS, 2020, 169
作者:  Sovacool, Benjamin K.;  Martiskainen, Mari;  Hook, Andrew;  Baker, Lucy
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
Energy transitions  Sustainability transitions  Nuclear energy  Solar energy  Smart grids  Electric mobility  
Probing the core of the strong nuclear interaction 期刊论文
NATURE, 2020, 578 (7796) : 540-+
作者:  Bialas, Allison R.;  Presumey, Jessy;  Das, Abhishek;  van der Poel, Cees E.;  Lapchak, Peter H.;  Mesin, Luka;  Victora, Gabriel;  Tsokos, George C.;  Mawrin, Christian;  Herbst, Ronald;  Carroll, Michael C.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

High-energy electron scattering that can isolate pairs of nucleons in high-momentum configurations reveals a transition to spin-independent scalar forces at small separation distances, supporting the use of point-like nucleon models to describe dense nuclear systems.


The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of quantum chromodynamics. However, as these equations cannot be solved directly, nuclear interactions are described using simplified models, which are well constrained at typical inter-nucleon distances(1-5) but not at shorter distances. This limits our ability to describe high-density nuclear matter such as that in the cores of neutron stars(6). Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations(7-9), accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta between the pair above 400 megaelectronvolts per c (c, speed of light in vacuum). As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor force to a predominantly spin-independent scalar force. These results demonstrate the usefulness of using such measurements to study the nuclear interaction at short distances and also support the use of point-like nucleon models with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of the nucleus.


  
In situ NMR metrology reveals reaction mechanisms in redox flow batteries 期刊论文
NATURE, 2020, 579 (7798) : 224-+
作者:  Ma, Jianfei;  You, Xin;  Sun, Shan;  Wang, Xiaoxiao;  Qin, Song;  Sui, Sen-Fang
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption(1). Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density(2,3). Thus, fundamental insight at the molecular level is required to improve performance(4,5). Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4 '  -((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H-1 NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H-1 NMR shift of the water resonance) and the line broadening of the H-1 shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.