GSTDTAP

浏览/检索结果: 共157条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
英国资助470万英镑建设11个监管科学网络 快报文章
资源环境快报,2025年第4期
作者:  牛艺博
Microsoft Word(20Kb)  |  收藏  |  浏览/下载:392/0  |  提交时间:2025/02/28
Innovate UK  Innovation Networks  Regulatory Science  
德研究确定中欧复合干热极端事件增加的因果关系 快报文章
资源环境快报,2025年第1期
作者:  刘燕飞
Microsoft Word(41Kb)  |  收藏  |  浏览/下载:568/0  |  提交时间:2025/01/15
Compound Hot and Dry Extremes  Causal Effect Networks  Anomalous Atmospheric Patterns  Soil Moisture Memory  
大都市城市水网中微污染物变化的系统研究 快报文章
资源环境快报,2022年第16期
作者:  吴秀平
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:712/1  |  提交时间:2022/08/31
Urban Water Networks  Microplastic  
英国发布支持净零能源系统的电网战略框架 快报文章
气候变化快报,2022年第16期
作者:  刘燕飞
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:637/0  |  提交时间:2022/08/19
Electricity Networks  net zero  energy system  
英国资助18个能源网络创新项目 快报文章
资源环境快报,2022年第15期
作者:  牛艺博
Microsoft Word(39Kb)  |  收藏  |  浏览/下载:765/0  |  提交时间:2022/08/15
UK  energy networks  innovation projects  
英国设立战略创新基金推动天然气和电力网络创新 快报文章
资源环境快报,2021年第17期
作者:  牛艺博
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:733/0  |  提交时间:2021/09/20
UK  The Strategic Innovation Fund (SIF)  Gas  electricity networks  net zero  
Spatial resolution and location impact group structure in a marine food web 期刊论文
ECOLOGY LETTERS, 2020
作者:  Ohlsson, Mikael;  Eklof, Anna
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/14
Communities  ecological networks  food webs  group model  group structure  spatial location  spatial resolution  
The environmental neighborhoods of cities and their spatial extent 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Llaguno-Munitxa, M.;  Bou-Zeid, E.
收藏  |  浏览/下载:19/0  |  提交时间:2020/08/18
urban environment  air quality  urban planning  sensor networks  spatial heterogeneity  
Development of advanced artificial intelligence models for daily rainfall prediction 期刊论文
ATMOSPHERIC RESEARCH, 2020, 237
作者:  Binh Thai Pham;  Lu Minh Le;  Tien-Thinh Le;  Kien-Trinh Thi Bui;  Vuong Minh Le;  Hai-Bang Ly;  Prakash, Indra
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/02
Rainfall  Artificial Neural Networks  Robustness analysis  Support Vector Machines  Adaptive Network based Fuzzy Inference System  Particle Swarm Optimization  
A developmental landscape of 3D-cultured human pre-gastrulation embryos 期刊论文
NATURE, 2020, 577 (7791) : 537-+
作者:  Xiang, Lifeng;  Yin, Yu;  Zheng, Yun;  Ma, Yanping;  Li, Yonggang;  Zhao, Zhigang;  Guo, Junqiang;  Ai, Zongyong;  Niu, Yuyu;  Duan, Kui;  He, Jingjing;  Ren, Shuchao;  Wu, Dan;  Bai, Yun;  Shang, Zhouchun;  Dai, Xi;  Ji, Weizhi;  Li, Tianqing
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms(1,2) that do not recapitulate the in vivo conditions(3-5). Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.


A 3D culture system to model human embryonic development, together with single-cell transcriptome profiling, provides insights into the molecular developmental landscape during human post-implantation embryogenesis.