GSTDTAP

浏览/检索结果: 共78条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part I: bibliometric and conceptual mapping 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Wiedenhofer, Dominik;  Virag, Doris;  Kalt, Gerald;  Plank, Barbara;  Streeck, Jan;  Pichler, Melanie;  Mayer, Andreas;  Krausmann, Fridolin;  Brockway, Paul;  Schaffartzik, Anke;  Fishman, Tomer;  Hausknost, Daniel;  Leon-Gruchalski, Bartholomaeus;  Sousa, Tania;  Creutzig, Felix;  Haberl, Helmut
收藏  |  浏览/下载:13/0  |  提交时间:2020/08/18
decoupling  green growth  degrowth  Environmental Kuznets Curve  dematerialization  decarbonization  socio-economic metabolism  
Microbial bile acid metabolites modulate gut ROR gamma(+) regulatory T cell homeostasis 期刊论文
NATURE, 2020, 577 (7790) : 410-+
作者:  Bhargava, Manjul
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules(1). Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins(2). Some BAs (approximately 5%) escape into the colon, where gut commensal bacteria convert them into various intestinal BAs2 that are important hormones that regulate host cholesterol metabolism and energy balance via several nuclear receptors and/or G-protein-coupled receptors(3,4). These receptors have pivotal roles in shaping host innate immune responses(1,5). However, the effect of this host-microorganism biliary network on the adaptive immune system remains poorly characterized. Here we report that both dietary and microbial factors influence the composition of the gut BA pool and modulate an important population of colonic FOXP3(+) regulatory T (T-reg) cells expressing the transcription factor ROR gamma. Genetic abolition of BA metabolic pathways in individual gut symbionts significantly decreases this T-reg cell population. Restoration of the intestinal BA pool increases colonic ROR gamma(+) T-reg cell counts and ameliorates host susceptibility to inflammatory colitis via BA nuclear receptors. Thus, a pan-genomic biliary network interaction between hosts and their bacterial symbionts can control host immunological homeostasis via the resulting metabolites.


  
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Oncometabolites suppress DNA repair by disrupting local chromatin signalling 期刊论文
NATURE, 2020
作者:  Zhang, Xu;  Lei, Bo;  Yuan, Yuan;  Zhang, Li;  Hu, Lu;  Jin, Sen;  Kang, Bilin;  Liao, Xuebin;  Sun, Wenzhi;  Xu, Fuqiang;  Zhong, Yi;  Hu, Ji;  Qi, Hai
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.


Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer(1). Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (IDH1 or IDH2) genes, or germline mutations in the fumarate hydratase (FH) and succinate dehydrogenase genes (SDHA, SDHB, SDHC and SDHD), respectively(2-4). Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)(5,6) and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.


  
The proteome landscape of the kingdoms of life 期刊论文
NATURE, 2020
作者:  Arzi, Anat;  Rozenkrantz, Liron;  Gorodisky, Lior;  Rozenkrantz, Danit;  Holtzman, Yael;  Ravia, Aharon;  Bekinschtein, Tristan A.;  Galperin, Tatyana;  Krimchansky, Ben-Zion;  Cohen, Gal;  Oksamitni, Anna;  Aidinoff, Elena;  Sacher, Yaron;  Sobel, Noam
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Proteins carry out the vast majority of functions in all biological domains, but for technological reasons their large-scale investigation has lagged behind the study of genomes. Since the first essentially complete eukaryotic proteome was reported(1), advances in mass-spectrometry-based proteomics(2)have enabled increasingly comprehensive identification and quantification of the human proteome(3-6). However, there have been few comparisons across species(7,8), in stark contrast with genomics initiatives(9). Here we use an advanced proteomics workflow-in which the peptide separation step is performed by a microstructured and extremely reproducible chromatographic system-for the in-depth study of 100 taxonomically diverse organisms. With two million peptide and 340,000 stringent protein identifications obtained in a standardized manner, we double the number of proteins with solid experimental evidence known to the scientific community. The data also provide a large-scale case study for sequence-based machine learning, as we demonstrate by experimentally confirming the predicted properties of peptides fromBacteroides uniformis. Our results offer a comparative view of the functional organization of organisms across the entire evolutionary range. A remarkably high fraction of the total proteome mass in all kingdoms is dedicated to protein homeostasis and folding, highlighting the biological challenge of maintaining protein structure in all branches of life. Likewise, a universally high fraction is involved in supplying energy resources, although these pathways range from photosynthesis through iron sulfur metabolism to carbohydrate metabolism. Generally, however, proteins and proteomes are remarkably diverse between organisms, and they can readily be explored and functionally compared at www.proteomesoflife.org.


  
Hepatic NADH reductive stress underlies common variation in metabolic traits 期刊论文
NATURE, 2020, 583 (7814) : 122-+
作者:  Skov, Laurits;  Coll Macia, Moises;  Sveinbjoernsson, Gardar;  Mafessoni, Fabrizio;  Lucotte, Elise A.;  Einarsdottir, Margret S.;  Jonsson, Hakon;  Halldorsson, Bjarni;  Gudbjartsson, Daniel F.;  Helgason, Agnar;  Schierup, Mikkel Heide;  Stefansson, Kari
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The cellular NADH/NAD(+) ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD(+) ratio in mice. By combining this genetic tool with metabolomics, we identify circulating alpha-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD(+) ratio, also known as reductive stress. In humans, elevations in circulating alpha-hydroxybutyrate levels have previously been associated with impaired glucose tolerance(2), insulin resistance(3) and mitochondrial disease(4), and are associated with a common genetic variant in GCKR(5), which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD(+) ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of '  causal metabolism'  .


The authors identify an increased hepatic NADH/NAD(+) ratio as an underlying metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases.


  
Preparation of cyclohexene isotopologues and stereoisotopomers from benzene 期刊论文
NATURE, 2020, 581 (7808) : 288-+
作者:  Shimazaki, Yuya;  Schwartz, Ido;  Watanabe, Kenji;  Taniguchi, Takashi;  Kroner, Martin;  Imamoglu, Atac
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine(1). Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules(1). Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington'  s disease(2), was recently approved by the United States'  Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial(1,3,4). The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound(5), improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug(6,7), these processes are often unselective and the stereoisotopic purity can be difficult to measure(7,8). Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Cyclohexene isotopologues and stereoisotopomers with varying degrees of deuteration are formed by binding a tungsten complex to benzene, which facilitates the selective incorporation of deuterium into any position on the ring.


  
A zinc-sensing protein gives flies a gut feeling for growth 期刊论文
NATURE, 2020, 580 (7802)
作者:  Heffernan, Olive
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

A zinc-sensing ion channel, Hodor, has now been found in the intestine of fruit flies. Hodor activates the TORC1 signalling pathway, and in doing so, influences organism-wide growth and metabolism.


  
Dialogues on nature, class and gender: Revisiting socio-ecological reproduction in past organic advanced agriculture (Sentmenat, Catalonia, 1850) 期刊论文
ECOLOGICAL ECONOMICS, 2020, 169
作者:  Marco, I.;  Padro, R.;  Tello, E.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Social metabolism  Inequality  Surplus appropriation  Female labour  Socio-ecological transition  
Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets 期刊论文
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2020, 61
作者:  Krausmann, Fridolin;  Wiedenhofer, Dominik;  Haberl, Helmut
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/02
Social metabolism  Material and energy flow analysis  Material stocks  Climate-change mitigation  SSP scenario  Low-carbon living