GSTDTAP

浏览/检索结果: 共97条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
国际研究从全球尺度评估屋顶太阳能光伏发电潜力 快报文章
气候变化快报,2021年第20期
作者:  刘莉娜
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:676/0  |  提交时间:2021/10/20
High Resolution  Rooftop Solar Photovoltaics  Renewable Electricity Generation  
Current European flood-rich period exceptional compared with past 500 years 期刊论文
NATURE, 2020, 583 (7817) : 560-+
作者:  ;  nter Blö;  schl;  Andrea Kiss;  Alberto Viglione;  Mariano Barriendos;  Oliver Bö;  hm;  Rudolf Brá;  zdil;  Denis Coeur;  Gaston Demaré;  e;  Maria Carmen Llasat;  Neil Macdonald;  Dag Retsö;  Lars Roald;  Petra Schmocker-Fackel;  Inê;  s Amorim;  Monika Bě;  ;  nová;  Gerardo Benito;  Chiara Bertolin;  Dario Camuffo;  Daniel Cornel;  Radosł;  aw Doktor;  ;  bor Elleder;  Silvia Enzi;  Joã;  o Carlos Garcia;  ;  diger Glaser;  Julia Hall;  Klaus Haslinger;  Michael Hofstä;  tter;  ;  rgen Komma;  Danuta Limanó;  wka;  David Lun;  Andrei Panin;  Juraj Parajka;  Hrvoje Petrić;  Fernando S. Rodrigo;  Christian Rohr;  Johannes Schö;  nbein;  Lothar Schulte;  Luí;  s Pedro Silva;  Willem H. J. Toonen;  Peter Valent;  ;  rgen Waser;  Oliver Wetter
收藏  |  浏览/下载:40/0  |  提交时间:2020/08/09

There are concerns that recent climate change is altering the frequency and magnitude of river floods in an unprecedented way(1). Historical studies have identified flood-rich periods in the past half millennium in various regions of Europe(2). However, because of the low temporal resolution of existing datasets and the relatively low number of series, it has remained unclear whether Europe is currently in a flood-rich period from a long-term perspective. Here we analyse how recent decades compare with the flood history of Europe, using a new database composed of more than 100 high-resolution (sub-annual) historical flood series based on documentary evidence covering all major regions of Europe. We show that the past three decades were among the most flood-rich periods in Europe in the past 500 years, and that this period differs from other flood-rich periods in terms of its extent, air temperatures and flood seasonality. We identified nine flood-rich periods and associated regions. Among the periods richest in floods are 1560-1580 (western and central Europe), 1760-1800 (most of Europe), 1840-1870 (western and southern Europe) and 1990-2016 (western and central Europe). In most parts of Europe, previous flood-rich periods occurred during cooler-than-usual phases, but the current flood-rich period has been much warmer. Flood seasonality is also more pronounced in the recent period. For example, during previous flood and interflood periods, 41 per cent and 42 per cent of central European floods occurred in summer, respectively, compared with 55 per cent of floods in the recent period. The exceptional nature of the present-day flood-rich period calls for process-based tools for flood-risk assessment that capture the physical mechanisms involved, and management strategies that can incorporate the recent changes in risk.


Analysis of thousands of historical documents recording floods in Europe shows that flooding characteristics in recent decades are unlike those of previous centuries.


  
Science刊文发布首个高分辨率地球核幔边界综合视图 快报文章
地球科学快报,2020年第12期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:341/0  |  提交时间:2020/06/24
core-mantle boundary  High resolution  Science  
Insights into the assembly and activation of the microtubule nucleator gamma-TuRC 期刊论文
NATURE, 2020, 578 (7795) : 467-+
作者:  Cyranoski, David
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Microtubules are dynamic polymers of alpha- and beta-tubulin and have crucial roles in cell signalling, cell migration, intracellular transport and chromosome segregation(1). They assemble de novo from alpha beta-tubulin dimers in an essential process termed microtubule nucleation. Complexes that contain the protein gamma-tubulin serve as structural templates for the microtubule nucleation reaction(2). In vertebrates, microtubules are nucleated by the 2.2-megadalton gamma-tubulin ring complex (gamma-TuRC), which comprises gamma-tubulin, five related gamma-tubulin complex proteins (GCP2-GCP6) and additional factors(3). GCP6 is unique among the GCP proteins because it carries an extended insertion domain of unknown function. Our understanding of microtubule formation in cells and tissues is limited by a lack of high-resolution structural information on the gamma-TuRC. Here we present the cryo-electron microscopy structure of gamma-TuRC from Xenopus laevis at 4.8 angstrom global resolution, and identify a 14-spoked arrangement of GCP proteins and gamma-tubulins in a partially flexible open left-handed spiral with a uniform sequence of GCP variants. By forming specific interactions with other GCP proteins, the GCP6-specific insertion domain acts as a scaffold for the assembly of the gamma-TuRC. Unexpectedly, we identify actin as a bona fide structural component of the gamma-TuRC with functional relevance in microtubule nucleation. The spiral geometry of gamma-TuRC is suboptimal for microtubule nucleation and a controlled conformational rearrangement of the gamma-TuRC is required for its activation. Collectively, our cryo-electron microscopy reconstructions provide detailed insights into the molecular organization, assembly and activation mechanism of vertebrate gamma-TuRC, and will serve as a framework for the mechanistic understanding of fundamental biological processes associated with microtubule nucleation, such as meiotic and mitotic spindle formation and centriole biogenesis(4).


The cryo-EM structure of the gamma-tubulin ring complex (gamma-TuRC) from Xenopus laevis provides insights into the molecular organization of the complex, and shows that actin is a structural component that is functionally relevant to microtubule nucleation.


  
Revealing enigmatic mucus structures in the deep sea using DeepPIV 期刊论文
NATURE, 2020, 583 (7814) : 78-+
作者:  Nguyen, Ngoc Uyen Nhi;  Canseco, Diana C.;  Xiao, Feng;  Nakada, Yuji;  Li, Shujuan;  Lam, Nicholas T.;  Muralidhar, Shalini A.;  Savla, Jainy J.;  Hill, Joseph A.;  Le, Victor;  Zidan, Kareem A.;  El-Feky, Hamed W.;  Wang, Zhaoning;  Ahmed, Mahmoud Salama;  Hubbi, Maimon E.;  Menendez-Montes, Ivan
收藏  |  浏览/下载:13/0  |  提交时间:2020/06/09

Advanced deep-sea imaging tools yield insights into the structure and function of mucus filtration houses built by midwater giant larvaceans.


Many animals build complex structures to aid in their survival, but very few are built exclusively from materials that animals create (1,2). In the midwaters of the ocean, mucoid structures are readily secreted by numerous animals, and serve many vital functions(3,4). However, little is known about these mucoid structures owing to the challenges of observing them in the deep sea. Among these mucoid forms, the '  houses'  of larvaceans are marvels of nature(5), and in the ocean twilight zone giant larvaceans secrete and build mucus filtering structures that can reach diameters of more than 1 m(6). Here we describe in situ laser-imaging technology(7) that reconstructs three-dimensional models of mucus forms. The models provide high-resolution views of giant larvacean houses and elucidate the role that house structure has in food capture and predator avoidance. Now that tools exist to study mucus structures found throughout the ocean, we can shed light on some of nature'  s most complex forms.


  
Synthesis and properties of free-standing monolayer amorphous carbon 期刊论文
NATURE, 2020, 577 (7789) : 199-+
作者:  Toh, Chee-Tat;  Zhang, Hongji;  Lin, Junhao;  Mayorov, Alexander S.;  Wang, Yun-Peng;  Orofeo, Carlo M.;  Ferry, Darim Badur;  Andersen, Henrik;  Kakenov, Nurbek;  Guo, Zenglong;  Abidi, Irfan Haider;  Sims, Hunter;  Suenaga, Kazu;  Pantelides, Sokrates T.;  Ozyilmaz, Barbaros
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks(1), recent experimental evidence favours the competing crystallite model in the case of amorphous silicon(2-4). In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition(5), of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model(6). We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.


  
Relaxation of Wind Stress Drives the Abrupt Onset of Biological Carbon Uptake in the Kerguelen Bloom: A Multisensor Approach 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Pellichero, Violaine;  Boutin, Jacqueline;  Claustre, Herve;  Merlivat, Liliane;  Sallee, Jean-baptiste;  Blain, Stephane
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
onset of the phytoplankton bloom  mixing-layer depth  in situ high-resolution data  mixed-layer depth  air-sea heat flux  wind stress  
Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy) 期刊论文
ATMOSPHERIC RESEARCH, 2020, 235
作者:  Valentini, S.;  Barnaba, F.;  Bernardoni, V;  Calzolai, G.;  Costabile, F.;  Di Liberto, L.;  Forello, A. C.;  Gobbi, G. P.;  Gualtieri, M.;  Lucarelli, F.;  Nava, S.;  Petralia, E.;  Valli, G.;  Wiedensohler, A.;  Vecchi, R.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Intensive optical properties  High time resolution  Aerosol classification schemes  
A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang 期刊论文
NATURE, 2020, 581 (7808) : 269-+
作者:  Poplawski, Gunnar H. D.;  Kawaguchi, Riki;  Van Niekerk, Erna;  Lu, Paul;  Mehta, Neil;  Canete, Philip;  Lie, Richard;  Dragatsis, Ioannis;  Meves, Jessica M.;  Zheng, Binhai;  Coppola, Giovanni;  Tuszynski, Mark H.
收藏  |  浏览/下载:55/0  |  提交时间:2020/07/03

Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation(1,2), but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the accretion of cold material and mergers(3,4). Observationally, it has been difficult to identify disk galaxies in emission at high redshift(5,6) in order to discern between competing models of galaxy formation. Here we report imaging, with a resolution of about 1.3 kiloparsecs, of the 158-micrometre emission line from singly ionized carbon, the far-infrared dust continuum and the near-ultraviolet continuum emission from a galaxy at a redshift of 4.2603, identified by detecting its absorption of quasar light. These observations show that the emission arises from gas inside a cold, dusty, rotating disk with a rotational velocity of about 272 kilometres per second. The detection of emission from carbon monoxide in the galaxy yields a molecular mass that is consistent with the estimate from the ionized carbon emission of about 72 billion solar masses. The existence of such a massive, rotationally supported, cold disk galaxy when the Universe was only 1.5 billion years old favours formation through either cold-mode accretion or mergers, although its large rotational velocity and large content of cold gas remain challenging to reproduce with most numerical simulations(7,8).


A massive rotating disk galaxy was formed a mere 1.5 billion years after the Big Bang, a surprisingly short time after the origin of the Universe.


  
Molecular Characterization of Organosulfates in Highly Polluted Atmosphere Using Ultra-High-Resolution Mass Spectrometry 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (8)
作者:  Cai, Dongmei;  Wang, Xinke;  Chen, Jianmin;  Li, Xiang
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Organosulfates  Molecular Characterization  ultra-high-resolution mass spectrometry  Formation mechanism