GSTDTAP

浏览/检索结果: 共80条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
科学家通过还原熔岩流过程揭示了大陆运移的奥秘 快报文章
地球科学快报,2025年第10期
作者:  张树良
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:450/0  |  提交时间:2025/05/25
TGFZ  fault movement  tectonic plates collide  volcanic and earthquake risks  global models of continental deformation  
气候科学家呼吁建立新一代千米尺度全球集合预报系统 快报文章
气候变化快报,2022年第13期
作者:  刘燕飞
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:695/2  |  提交时间:2022/07/06
climate prediction  global climate models  kilometre-scale models  
Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Bador, Margot;  Boe, Julien;  Terray, Laurent;  Alexander, Lisa, V;  Baker, Alexander;  Bellucci, Alessio;  Haarsma, Rein;  Koenigk, Torben;  Moine, Marie-Pierre;  Lohmann, Katja;  Putrasahan, Dian A.;  Roberts, Chris;  Roberts, Malcolm;  Scoccimarro, Enrico;  Schiemann, Reinhard;  Seddon, Jon;  Senan, Retish;  Valcke, Sophie;  Vanniere, Benoit
收藏  |  浏览/下载:43/0  |  提交时间:2020/08/18
precipitation extremes  multimodel and multiproduct of observations framework  performance of the models  global climate models for CMIP6 and HighResMIP  sensitivity to atmospheric spatial resolution  
A New Method to Construct a Horizontal Resolution-Dependent Wind Speed Adjustment Factor for Tropical Cyclones in Global Climate Model Simulations 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
作者:  Moon, Yumin;  Kim, Daehyun;  Camargo, Suzana J.;  Wing, Allison A.;  Reed, Kevin A.;  Wehner, Michael F.;  Zhao, Ming
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/25
tropical cyclones  global climate models  
Asynchronous carbon sink saturation in African and Amazonian tropical forests 期刊论文
NATURE, 2020, 579 (7797) : 80-+
作者:  Wannes Hubau;  Simon L. Lewis;  Oliver L. Phillips;  Kofi Affum-Baffoe;  Hans Beeckman;  Aida Cuní;  -Sanchez;  Armandu K. Daniels;  Corneille E. N. Ewango;  Sophie Fauset;  Jacques M. Mukinzi;  Douglas Sheil;  Bonaventure Sonké;  Martin J. P. Sullivan;  Terry C. H. Sunderland;  Hermann Taedoumg;  Sean C. Thomas;  Lee J. T. White;  Katharine A. Abernethy;  Stephen Adu-Bredu;  Christian A. Amani;  Timothy R. Baker;  Lindsay F. Banin;  Fidè;  le Baya;  Serge K. Begne;  Amy C. Bennett;  Fabrice Benedet;  Robert Bitariho;  Yannick E. Bocko;  Pascal Boeckx;  Patrick Boundja;  Roel J. W. Brienen;  Terry Brncic;  Eric Chezeaux;  George B. Chuyong;  Connie J. Clark;  Murray Collins;  James A. Comiskey;  David A. Coomes;  Greta C. Dargie;  Thales de Haulleville;  Marie Noel Djuikouo Kamdem;  Jean-Louis Doucet;  Adriane Esquivel-Muelbert;  Ted R. Feldpausch;  Alusine Fofanah;  Ernest G. Foli;  Martin Gilpin;  Emanuel Gloor;  Christelle Gonmadje;  Sylvie Gourlet-Fleury;  Jefferson S. Hall;  Alan C. Hamilton;  David J. Harris;  Terese B. Hart;  Mireille B. N. Hockemba;  Annette Hladik;  Suspense A. Ifo;  Kathryn J. Jeffery;  Tommaso Jucker;  Emmanuel Kasongo Yakusu;  Elizabeth Kearsley;  David Kenfack;  Alexander Koch;  Miguel E. Leal;  Aurora Levesley;  Jeremy A. Lindsell;  Janvier Lisingo;  Gabriela Lopez-Gonzalez;  Jon C. Lovett;  Jean-Remy Makana;  Yadvinder Malhi;  Andrew R. Marshall;  Jim Martin;  Emanuel H. Martin;  Faustin M. Mbayu;  Vincent P. Medjibe;  Vianet Mihindou;  Edward T. A. Mitchard;  Sam Moore;  Pantaleo K. T. Munishi;  Natacha Nssi Bengone;  Lucas Ojo;  Fidè;  le Evouna Ondo;  Kelvin S.-H. Peh;  Georgia C. Pickavance;  Axel Dalberg Poulsen;  John R. Poulsen;  Lan Qie;  Jan Reitsma;  Francesco Rovero;  Michael D. Swaine;  Joey Talbot;  James Taplin;  David M. Taylor;  Duncan W. Thomas;  Benjamin Toirambe;  John Tshibamba Mukendi;  Darlington Tuagben;  Peter M. Umunay;  Geertje M. F. van der Heijden;  Hans Verbeeck;  Jason Vleminckx;  Simon Willcock;  Hannsjö;  rg Wö;  ll;  John T. Woods;  Lise Zemagho
收藏  |  浏览/下载:73/0  |  提交时间:2020/05/13

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions(1-3). Climate-driven vegetation models typically predict that this tropical forest '  carbon sink'  will continue for decades(4,5). Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests(6). Therefore the carbon sink responses of Earth'  s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature(7-9). Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth'  s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass(10) reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth'  s climate.


  
Tail-propelled aquatic locomotion in a theropod dinosaur 期刊论文
NATURE, 2020
作者:  Banerjee, Antara;  Fyfe, John C.;  Polvani, Lorenzo M.;  Waugh, Darryn;  Chang, Kai-Lan
收藏  |  浏览/下载:96/0  |  提交时间:2020/07/03

Discovery that the giant theropod dinosaur Spinosaurus has a large flexible tail indicates that it was primarily aquatic and swam in a similar manner to extant tail-propelled aquatic vertebrates.


In recent decades, intensive research on non-avian dinosaurs has strongly suggested that these animals were restricted to terrestrial environments(1). Historical proposals that some groups, such as sauropods and hadrosaurs, lived in aquatic environments(2,3) were abandoned decades ago(4-6). It has recently been argued that at least some of the spinosaurids-an unusual group of large-bodied theropods of the Cretaceous era-were semi-aquatic(7,8), but this idea has been challenged on anatomical, biomechanical and taphonomic grounds, and remains controversial(9-11). Here we present unambiguous evidence for an aquatic propulsive structure in a dinosaur, the giant theropod Spinosaurus aegyptiacus(7,12). This dinosaur has a tail with an unexpected and unique shape that consists of extremely tall neural spines and elongate chevrons, which forms a large, flexible fin-like organ capable of extensive lateral excursion. Using a robotic flapping apparatus to measure undulatory forces in physical models of different tail shapes, we show that the tail shape of Spinosaurus produces greater thrust and efficiency in water than the tail shapes of terrestrial dinosaurs and that these measures of performance are more comparable to those of extant aquatic vertebrates that use vertically expanded tails to generate forward propulsion while swimming. These results are consistent with the suite of adaptations for an aquatic lifestyle and piscivorous diet that have previously been documented for Spinosaurus(7,13,14). Although developed to a lesser degree, aquatic adaptations are also found in other members of the spinosaurid clade(15,16), which had a near-global distribution and a stratigraphic range of more than 50 million years(14), pointing to a substantial invasion of aquatic environments by dinosaurs.


  
DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis 期刊论文
NATURE, 2020, 579 (7798) : 291-+
作者:  Avellaneda, Mario J.;  Franke, Kamila B.;  Sunderlikova, Vanda;  Bukau, Bernd;  Mogk, Axel;  Tans, Sander J.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The DNA-dependent protein kinase (DNA-PK), which comprises the KU heterodimer and a catalytic subunit (DNA-PKcs), is a classical non-homologous end-joining (cNHEJ) factor(1). KU binds to DNA ends, initiates cNHEJ, and recruits and activates DNA-PKcs. KU also binds to RNA, but the relevance of this interaction in mammals is unclear. Here we use mouse models to show that DNA-PK has an unexpected role in the biogenesis of ribosomal RNA (rRNA) and in haematopoiesis. The expression of kinase-dead DNA-PKcs abrogates cNHEJ(2). However, most mice that both expressed kinase-dead DNA-PKcs and lacked the tumour suppressor TP53 developed myeloid disease, whereas all other previously characterized mice deficient in both cNHEJ and TP53 expression succumbed to pro-B cell lymphoma(3). DNA-PK autophosphorylates DNA-PKcs, which is its best characterized substrate. Blocking the phosphorylation of DNA-PKcs at the T2609 cluster, but not the S2056 cluster, led to KU-dependent defects in 18S rRNA processing, compromised global protein synthesis in haematopoietic cells and caused bone marrow failure in mice. KU drives the assembly of DNA-PKcs on a wide range of cellular RNAs, including the U3 small nucleolar RNA, which is essential for processing of 18S rRNA(4). U3 activates purified DNA-PK and triggers phosphorylation of DNA-PKcs at T2609. DNA-PK, but not other cNHEJ factors, resides in nucleoli in an rRNA-dependent manner and is co-purified with the small subunit processome. Together our data show that DNA-PK has RNA-dependent, cNHEJ-independent functions during ribosome biogenesis that require the kinase activity of DNA-PKcs and its phosphorylation at the T2609 cluster.


  
Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer 期刊论文
NATURE, 2020, 578 (7794) : 306-+
作者:  Harper, Gavin;  Sommerville, Roberto;  Kendrick, Emma;  Driscoll, Laura;  Slater, Peter;  Stolkin, Rustam;  Walton, Allan;  Christensen, Paul;  Heidrich, Oliver;  Lambert, Simon;  Abbott, Andrew;  Ryder, Karl;  Gaines, Linda;  Anderson, Paul
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

ABBV-744, a selective inhibitor of the BD2 domains of BET family proteins, is effective against prostate cancer in mouse xenograft models, with lower toxicities than the dual-bromodomain BET inhibitor ABBV-075.


Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi(1-5). Given that similar haematological and gastrointestinal defects were observed after genetic silencing of Brd4 in mice(6), the platelet and gastrointestinal toxicities may represent on-target activities associated with BET inhibition. The two individual bromodomains in BET family proteins may have distinct functions(7-9) and different cellular phenotypes after pharmacological inhibition of one or both bromodomains have been reported(10,11), suggesting that selectively targeting one of the bromodomains may result in a different efficacy and tolerability profile compared with DbBi. Available compounds that are selective to individual domains lack sufficient potency and the pharmacokinetics properties that are required for in vivo efficacy and tolerability assessment(10-13). Here we carried out a medicinal chemistry campaign that led to the discovery of ABBV-744, a highly potent and selective inhibitor of the BD2 domain of BET family proteins with drug-like properties. In contrast to the broad range of cell growth inhibition induced by DbBi, the antiproliferative activity of ABBV-744 was largely, but not exclusively, restricted to cell lines of acute myeloid leukaemia and prostate cancer that expressed the full-length androgen receptor (AR). ABBV-744 retained robust activity in prostate cancer xenografts, and showed fewer platelet and gastrointestinal toxicities than the DbBi ABBV-075(14). Analyses of RNA expression and chromatin immunoprecipitation followed by sequencing revealed that ABBV-744 displaced BRD4 from AR-containing super-enhancers and inhibited AR-dependent transcription, with less impact on global transcription compared with ABBV-075. These results underscore the potential value of selectively targeting the BD2 domain of BET family proteins for cancer therapy.


  
Early climate models successfully predicted global warming 期刊论文
NATURE, 2020, 578 (7793) : 45-46
作者:  Bertolucci, Sergio;  Mulargia, Francesco;  Giardini, Domenico
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

An evaluation of past climate-model forecasts.


Climate models published between 1970 and 2007 provided accurate forecasts of subsequently observed global surface warming. This finding shows the value of using global observations to vet climate models as the planet warms.


  
No Cookie for Climate Change 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019
作者:  Voigt, A.;  Albern, N.
收藏  |  浏览/下载:17/0  |  提交时间:2020/02/17
clouds  radiation  climate change  circulation  global models