GSTDTAP

浏览/检索结果: 共94条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
平衡气候敏感度的温度状态依赖性不可忽视 快报文章
气候变化快报,2020年第18期
作者:  董利苹
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:362/0  |  提交时间:2020/09/20
Eocene  Equilibrium Climate Sensitivity  Proxy Evidence  
Comparing energy and material efficiency rebound effects: an exploration of scenarios in the GEM-E3 macroeconomic model 期刊论文
ECOLOGICAL ECONOMICS, 2020, 173
作者:  Skelton, Alexandra C. H.;  Paroussos, Leonidas;  Allwood, Julian M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/08/18
CGE model  Computable general equilibrium  Rebound effect  Jevon'  s Paradox  Material efficiency  Resource efficiency  Circular economy  
Acquiring environmental flows: ecological economics of policy development in western US 期刊论文
ECOLOGICAL ECONOMICS, 2020, 173
作者:  Colby, Bonnie
收藏  |  浏览/下载:10/0  |  提交时间:2020/08/18
Environmental flows  Markets  Water trading  Institutions  Conflict resolution  Patrimony  Social Ecological Economics of Water  Punctuated Equilibrium Theory  
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation 期刊论文
NATURE, 2020, 581 (7807) : 184-+
作者:  Liang, Guanxiang;  Zhao, Chunyu;  Zhang, Huanjia;  Mattei, Lisa;  Sherrill-Mix, Scott;  Bittinger, Kyle;  Kessler, Lyanna R.;  Wu, Gary D.;  Baldassano, Robert N.;  DeRusso, Patricia;  Ford, Eileen;  Elovitz, Michal A.;  Kelly, Matthew S.;  Patel, Mohamed Z.;  Mazhani, Tiny;  Gerber, Jeffrey S.;  Kelly, Andrea;  Zemel, Babette S.;  Bushman, Frederic D.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).


  
Convective Dynamics and the Response of Precipitation Extremes to Warming in Radiative-Convective Equilibrium 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (5) : 1637-1660
作者:  Abbott, Tristan H.;  Cronin, Timothy W.;  Beucler, Tom
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Tropics  Extreme events  Precipitation  Radiative-convective equilibrium  Climate change  Cloud resolving models  
Estimation of Direct and Indirect Economic Losses Caused by a Flood With Long-Lasting Inundation: Application to the 2011 Thailand Flood 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Tanoue, M.;  Taguchi, R.;  Nakata, S.;  Watanabe, S.;  Fujimori, S.;  Hirabayashi, Y.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/02
Flood  Thailand  direct  indirect economic losses  computable general equilibrium model  global river and inundation model  
Exploring dynamical phase transitions with cold atoms in an optical cavity 期刊论文
NATURE, 2020, 580 (7805) : 602-+
作者:  Halbach, Rebecca;  Miesen, Pascal;  Joosten, Joep;  Taskopru, Ezgi;  Rondeel, Inge;  Pennings, Bas;  Vogels, Chantal B. F.;  Merkling, Sarah H.;  Koenraadt, Constantianus J.;  Lambrechts, Louis;  van Rij, Ronald P.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Interactions between light and an ensemble of strontium atoms in an optical cavity can serve as a testbed for studying dynamical phase transitions, which are currently not well understood.


Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters(1-4). Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated(5-11). These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium(12-16), as demonstrated by recent experiments(17-22). These phases can also display universal behaviours akin to standard equilibrium phase transitions(8,23,24). Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model(25,26), an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium(27), or coupled atomic(28) and solid-state polariton(29) condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks(30,31).


  
Emergent Simplicity of Continental Evapotranspiration 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  McColl, Kaighin A.;  Rigden, Angela J.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
evapotranspiration  land-atmosphere coupling  land-atmosphere interactions  surface flux equilibrium  hydrometeorology  water stress  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
Response of precipitation extremes to warming: what have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned? 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Muller, Caroline;  Takayabu, Yukari
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
precipitation extremes  tropical convection  radiative-convective equilibrium