GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Science:多种矿产资源生产用水超过可持续用水限度 快报文章
地球科学快报,2025年第6期
作者:  刘学
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:422/0  |  提交时间:2025/03/25
critical metals  copper  iron  
从现有矿山中获取可再生能源产品相关的关键金属 快报文章
地球科学快报,2022年第20期
作者:  刘学
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:635/0  |  提交时间:2022/10/24
critical metals  renewable energy  tellurium  
交互式地图和报告显示美洲能源转型对环境的影响 快报文章
地球科学快报,2021年第23期
作者:  刘学
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:708/0  |  提交时间:2021/12/10
Energy transition  Americas  Critical metals and minerals  
英国发布关键原材料评估报告 快报文章
地球科学快报,2021年第8期
作者:  刘学
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:465/0  |  提交时间:2021/04/25
Rare-earth  critical materials  Platinum-group metals  UK  
High-pressure strengthening in ultrafine-grained metals 期刊论文
NATURE, 2020
作者:  Yoshida, Kenichi;  Gowers, Kate H. C.;  Lee-Six, Henry;  Chandrasekharan, Deepak P.;  Coorens, Tim;  Maughan, Elizabeth F.;  Beal, Kathryn;  Menzies, Andrew;  Millar, Fraser R.;  Anderson, Elizabeth;  Clarke, Sarah E.;  Pennycuick, Adam;  Thakrar, Ricky M.;  Butler, Colin R.
收藏  |  浏览/下载:49/0  |  提交时间:2020/07/03

High-pressure diamond anvil cell experiments reveal that compression strengthening of nanocrystalline nickel increases as its grain sizes decrease to 3 nanometres, owing to dislocation hardening and suppression of grain boundary plasticity.


The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres(1,2). As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres(3). Here we track in situ the yield stress and deformation texturing of pure nickel samples of various average grain sizes using a diamond anvil cell coupled with radial X-ray diffraction. Our high-pressure experiments reveal continuous strengthening in samples with grain sizes from 200 nanometres down to 3 nanometres, with the strengthening enhanced (rather than reduced) at grain sizes smaller than 20 nanometres. We achieve a yield strength of approximately 4.2 gigapascals in our 3-nanometre-grain-size samples, ten times stronger than that of a commercial nickel material. A maximum flow stress of 10.2 gigapascals is obtained in nickel of grain size 3 nanometres for the pressure range studied here. We see similar patterns of compression strengthening in gold and palladium samples down to the smallest grain sizes. Simulations and transmission electron microscopy reveal that the high strength observed in nickel of grain size 3 nanometres is caused by the superposition of strengthening mechanisms: both partial and full dislocation hardening plus suppression of grain boundary plasticity. These insights contribute to the ongoing search for ultrastrong metals via materials engineering.


  
Material requirements and availability for multi-terawatt deployment of photovoltaics 期刊论文
ENERGY POLICY, 2017, 108
作者:  Davidsson, Simon;  Hook, Mikael
收藏  |  浏览/下载:21/0  |  提交时间:2019/04/09
Solar energy  Photovoltaics  Critical materials  Energy metals  Renewable energy  Recycling