GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Lactonization as a general route to beta-C(sp(3))-H functionalization 期刊论文
NATURE, 2020, 577 (7792) : 656-+
作者:  Washington, Harriet A.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Functionalization of the beta-C-H bonds of aliphatic acids is emerging as a valuable synthetic disconnection that complements a wide range of conjugate addition reactions(1-5). Despite efforts for beta-C-H functionalization in carbon-carbon and carbon-heteroatom bond-forming reactions, these have numerous crucial limitations, especially for industrial-scale applications, including lack of mono-selectivity, use of expensive oxidants and limited scope(6-13). Notably, the majority of these reactions are incompatible with free aliphatic acids without exogenous directing groups. Considering the challenge of developing C-H activation reactions, it is not surprising that achieving different transformations requires independent catalyst design and directing group optimizations in each case. Here we report a Pd-catalysed beta-C(sp(3))-H lactonization of aliphatic acids enabled by a mono-N-protected beta-amino acid ligand. The highly strained and reactive beta-lactone products are versatile linchpins for the mono-selective installation of diverse alkyl, alkenyl, aryl, alkynyl, fluoro, hydroxyl and amino groups at the beta position of the parent acid, thus providing a route to many carboxylic acids. The use of inexpensive tert-butyl hydrogen peroxide as the oxidant to promote the desired selective reductive elimination from the Pd(IV) centre, as well as the ease of product purification without column chromatography, render this reaction amenable to tonne-scale manufacturing.


  
Late-stage oxidative C(sp(3))-H methylation 期刊论文
NATURE, 2020, 580 (7805) : 621-+
作者:  Fessler, Evelyn;  Eckl, Eva-Maria;  Schmitt, Sabine;  Mancilla, Igor Alves;  Meyer-Bender, Matthias F.;  Hanf, Monika;  Philippou-Massier, Julia;  Krebs, Stefan;  Zischka, Hans;  Jae, Lucas T.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Frequently referred to as the '  magic methyl effect'  , the installation of methyl groups-especially adjacent (alpha) to heteroatoms-has been shown to dramatically increase the potency of biologically active molecules(1-3). However, existing methylation methods show limited scope and have not been demonstrated in complex settings(1). Here we report a regioselective and chemoselective oxidative C(sp(3))-H methylation method that is compatible with late-stage functionalization of drug scaffolds and natural products. This combines a highly site-selective and chemoselective C-H hydroxylation with a mild, functional-group-tolerant methylation. Using a small-molecule manganese catalyst, Mn(CF3PDP), at low loading (at a substrate/catalyst ratio of 200) affords targeted C-H hydroxylation on heterocyclic cores, while preserving electron-neutral and electron-rich aryls. Fluorine- or Lewis-acid-assisted formation of reactive iminium or oxonium intermediates enables the use of a mildly nucleophilic organoaluminium methylating reagent that preserves other electrophilic functionalities on the substrate. We show this late-stage C(sp(3))-H methylation on 41 substrates housing 16 different medicinally important cores that include electron-rich aryls, heterocycles, carbonyls and amines. Eighteen pharmacologically relevant molecules with competing sites-including drugs (for example, tedizolid) and natural products-are methylated site-selectively at the most electron rich, least sterically hindered position. We demonstrate the syntheses of two magic methyl substrates-an inverse agonist for the nuclear receptor RORc and an antagonist of the sphingosine-1-phosphate receptor-1-via late-stage methylation from the drug or its advanced precursor. We also show a remote methylation of the B-ring carbocycle of an abiraterone analogue. The ability to methylate such complex molecules at late stages will reduce synthetic effort and thereby expedite broader exploration of the magic methyl effect in pursuit of new small-molecule therapeutics and chemical probes.


A manganese-catalysed oxidative C(sp(3))-H methylation method allows a methyl group to be selectively installed into medicinally important heterocycles, providing a way to improve pharmaceuticals and better understand the '  magic methyl effect'  .


  
Elixirs for times of plague and bullion shortage 期刊论文
NATURE, 2020, 580 (7805) : 592-593
作者:  Gibney, Elizabeth
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/03

The addition of a methyl group to a drug molecule can greatly alter the drug'  s pharmacological properties. A catalyst has been developed that enables this '  magic methyl effect'  to be rapidly explored for drug discovery.


Late-stage functionalization of complex organic molecules.


  
Copper-mediated synthesis of drug-like bicyclopentanes 期刊论文
NATURE, 2020, 580 (7802) : 220-+
作者:  Canavelli, Pierre;  Islam, Saidul;  Powner, Matthew W.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences(1). Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements(2). These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles(3-13). The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, alpha-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


A one-step, three-component radical coupling of [1.1.1]propellane by a photoredox reaction mediated by a copper catalyst produces drug-like bicyclopentanes.


  
Integrated Technology Air Cleaners (ITAC): Design and Evaluation 科技报告
来源:US Department of Energy (DOE). 出版年: 2013
作者:  Fisk, William J.;  Cohn, Sebastian;  Destaillats, Hugo;  Henzel, Victor;  Sidheswaran, Meera;  Sullivan, Douglas P.
收藏  |  浏览/下载:2/0  |  提交时间:2019/04/05
air cleaning  catalyst  energy efficiency  filtration  homes  ventilation